Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 1/2019

31.10.2018

A study on graphene/tin oxide performance as negative electrode compound for lithium battery application

verfasst von: Atef Y. Shenouda, Anton A. Momchilov

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A novel negative (anode) material for lithium-ion batteries, tin oxide particles covered with graphene (SnO/graphene) prepared from graphite was fabricated by hydrothermal synthesis. The structure and morphology of the composite were characterized by Raman spectra, FTIR spectra, XRD, XPS and FESEM. It is observed that the G and 2D bands (1581 and 2831 cm−1, respectively) have more intensity in graphene rather than graphite. EIS was carried out. It is observed that the lowest Warburg impedance coefficient, σw, is 24.39 Ω s0.5 for Li/SnO–graphene (3:1) cell. The reversible specific capacity of Li/SnO–graphene (3:1) cell was about 0.950 Ah g−1 after 100 cycles at current density current 10−2 A g−1. These results indicate that 3 SnO:1 graphene possesses superior cycle performance and high rate capability. The enhanced electrochemical performances can be ascribed to the characteristic structure of tin oxide with graphene shells, which buffer the volume change of the metallic tin and prevent the detachment and agglomeration of pulverized tin.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M.H. Liang, L.J. Zhi, Graphene-based electrode materials for rechargeable lithium batteries. J. Mater. Chem. 19, 5871–5878 (2009)CrossRef M.H. Liang, L.J. Zhi, Graphene-based electrode materials for rechargeable lithium batteries. J. Mater. Chem. 19, 5871–5878 (2009)CrossRef
2.
Zurück zum Zitat S.M. Paek, E.J. Yoo, I. Honma, Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 9, 72–75 (2009)CrossRef S.M. Paek, E.J. Yoo, I. Honma, Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 9, 72–75 (2009)CrossRef
3.
Zurück zum Zitat A.Y. Shenouda, H.K. Liu, Electrochemical behaviour of tin borophosphate negative electrodes for energy storage systems. J. Power Sources 185, 1386–1391 (2008)CrossRef A.Y. Shenouda, H.K. Liu, Electrochemical behaviour of tin borophosphate negative electrodes for energy storage systems. J. Power Sources 185, 1386–1391 (2008)CrossRef
4.
Zurück zum Zitat A.Y. Shenouda, H.K. Liu, Studies on electrochemical behaviour of zinc-doped LiFePO4 for lithium battery positive electrode. J. Alloys Compd. 477, 498–503 (2009)CrossRef A.Y. Shenouda, H.K. Liu, Studies on electrochemical behaviour of zinc-doped LiFePO4 for lithium battery positive electrode. J. Alloys Compd. 477, 498–503 (2009)CrossRef
5.
Zurück zum Zitat M. Reddy, G. Subba Rao, B. Chowdari, Metal oxides and oxysalts as anode materials for Li ion. Batteries Chem. Rev. 113, 5364–5457 (2013) M. Reddy, G. Subba Rao, B. Chowdari, Metal oxides and oxysalts as anode materials for Li ion. Batteries Chem. Rev. 113, 5364–5457 (2013)
6.
Zurück zum Zitat J.S. Chen, Y.L. Cheah, Y.T. Chen, N. Jayaprakash, S. Madhavi, Y.H. Yang, SnO2 nanoparticles with controlled carbon nanocoating as high-capacity anode materials for lithium-ion batteries. J. Phys. Chem. C 113, 20504–20508 (2009)CrossRef J.S. Chen, Y.L. Cheah, Y.T. Chen, N. Jayaprakash, S. Madhavi, Y.H. Yang, SnO2 nanoparticles with controlled carbon nanocoating as high-capacity anode materials for lithium-ion batteries. J. Phys. Chem. C 113, 20504–20508 (2009)CrossRef
7.
Zurück zum Zitat W. Yue, S. Yang, Y. Ren, X. Yang, In situ growth of Sn, SnO on graphene nanosheets and their application as anode materials for lithium-ion batteries. Electrochim. Acta 92, 412–420 (2013)CrossRef W. Yue, S. Yang, Y. Ren, X. Yang, In situ growth of Sn, SnO on graphene nanosheets and their application as anode materials for lithium-ion batteries. Electrochim. Acta 92, 412–420 (2013)CrossRef
8.
Zurück zum Zitat Y. Wang, M. Wu, Z. Jiao, J.Y. Lee, Sn@CNT and Sn@C@CNT nanostructures for superior reversible lithium ion storage. Chem. Mater. 21, 3210–3215 (2009)CrossRef Y. Wang, M. Wu, Z. Jiao, J.Y. Lee, Sn@CNT and Sn@C@CNT nanostructures for superior reversible lithium ion storage. Chem. Mater. 21, 3210–3215 (2009)CrossRef
9.
Zurück zum Zitat X.W. Lou, Y. Wang, C.L. Yuan, J.Y. Lee, L.A. Archer, Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 18, 2325–2329 (2006)CrossRef X.W. Lou, Y. Wang, C.L. Yuan, J.Y. Lee, L.A. Archer, Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 18, 2325–2329 (2006)CrossRef
10.
Zurück zum Zitat S.J. Han, B.C. Jang, T. Kim, S.M. Oh, T. Hyeon, Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes. Adv. Funct. Mater. 15, 1845–1850 (2005)CrossRef S.J. Han, B.C. Jang, T. Kim, S.M. Oh, T. Hyeon, Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes. Adv. Funct. Mater. 15, 1845–1850 (2005)CrossRef
11.
Zurück zum Zitat G. Wu, M. Wu, D. Wang, L. Yin, J. Ye, S. Deng, Z. Zhu, W. Ye Guiliang, Z. Li, A facile method for in-situ synthesis of SnO2/graphene as a high performance anode material for lithium-ion batteries. Appl. Surf. Sci. 315, 400–406 (2014)CrossRef G. Wu, M. Wu, D. Wang, L. Yin, J. Ye, S. Deng, Z. Zhu, W. Ye Guiliang, Z. Li, A facile method for in-situ synthesis of SnO2/graphene as a high performance anode material for lithium-ion batteries. Appl. Surf. Sci. 315, 400–406 (2014)CrossRef
12.
Zurück zum Zitat L.Y. Jiang, X.L. Wu, Y.G. Guo, L.J. Wan, SnO2-based hierarchical nano microstructures: facile synthesis and their applications in gas sensors and lithium-ion batteries. J. Phys. Chem. C 113, 14213–14219 (2009)CrossRef L.Y. Jiang, X.L. Wu, Y.G. Guo, L.J. Wan, SnO2-based hierarchical nano microstructures: facile synthesis and their applications in gas sensors and lithium-ion batteries. J. Phys. Chem. C 113, 14213–14219 (2009)CrossRef
13.
Zurück zum Zitat M.S. Park, Y.M. Kang, S.X. Dou, H.K. Liu, Reduction-free synthesis of carbon-encapsulated SnO2 nanowires and their superiority in electrochemical performance. J. Phys. Chem. C 112, 11286–11289 (2008)CrossRef M.S. Park, Y.M. Kang, S.X. Dou, H.K. Liu, Reduction-free synthesis of carbon-encapsulated SnO2 nanowires and their superiority in electrochemical performance. J. Phys. Chem. C 112, 11286–11289 (2008)CrossRef
14.
Zurück zum Zitat X.W. Lou, D. Deng, J.Y. Lee, L.A. Archer, Preparation of SnO2/carbon composite hollow spheres and their lithium storage properties. Chem. Mater. 20, 6562–6566 (2008)CrossRef X.W. Lou, D. Deng, J.Y. Lee, L.A. Archer, Preparation of SnO2/carbon composite hollow spheres and their lithium storage properties. Chem. Mater. 20, 6562–6566 (2008)CrossRef
15.
Zurück zum Zitat M.S. Parka, Y.M. Kang, J.H. Kima, G.X. Wang, S.X. Dou, H.K. Liu, Effects of low-temperature carbon encapsulation on the electrochemical performance of SnO2 nanopowders. Carbon 46, 35–40 (2008)CrossRef M.S. Parka, Y.M. Kang, J.H. Kima, G.X. Wang, S.X. Dou, H.K. Liu, Effects of low-temperature carbon encapsulation on the electrochemical performance of SnO2 nanopowders. Carbon 46, 35–40 (2008)CrossRef
16.
Zurück zum Zitat X.W. Lou, J.S. Chen, P. Chen, L.A. Archer, One-pot synthesis of carbon-coated SnO2 nanocolloids with improved reversible lithium storage properties. Chem. Mater. 21, 2868–2874 (2009)CrossRef X.W. Lou, J.S. Chen, P. Chen, L.A. Archer, One-pot synthesis of carbon-coated SnO2 nanocolloids with improved reversible lithium storage properties. Chem. Mater. 21, 2868–2874 (2009)CrossRef
17.
Zurück zum Zitat K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, Electric field effect in atomically thin carbon films. Science 30, 6666–6669 (2004) K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, Electric field effect in atomically thin carbon films. Science 30, 6666–6669 (2004)
18.
Zurück zum Zitat F. Miao, S. Wijeratne, Y. Zhang, U.C. Coskun, W. Bao, C.N. Lau, Phase-coherent transport in graphene quantum billiards. Science 317, 1530–15333 (2007)CrossRef F. Miao, S. Wijeratne, Y. Zhang, U.C. Coskun, W. Bao, C.N. Lau, Phase-coherent transport in graphene quantum billiards. Science 317, 1530–15333 (2007)CrossRef
19.
Zurück zum Zitat N.M.R. Peres, A.H. Castro Neto, F. Guinea, Electronic properties of disordered two-dimensional carbon. Phys. Rev. B 73, 125411–125419 (2006)CrossRef N.M.R. Peres, A.H. Castro Neto, F. Guinea, Electronic properties of disordered two-dimensional carbon. Phys. Rev. B 73, 125411–125419 (2006)CrossRef
20.
Zurück zum Zitat A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, Superior thermal conductivity of single-layer grapheme. Nano Lett. 8, 902–907 (2008)CrossRef A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, Superior thermal conductivity of single-layer grapheme. Nano Lett. 8, 902–907 (2008)CrossRef
21.
Zurück zum Zitat B.J. Li, H.Q. Cao, ZnO@graphene composite with enhanced performance for the removal of dye from water. J. Mater. Chem. 21, 3346–3349 (2011)CrossRef B.J. Li, H.Q. Cao, ZnO@graphene composite with enhanced performance for the removal of dye from water. J. Mater. Chem. 21, 3346–3349 (2011)CrossRef
22.
Zurück zum Zitat Q. Guo, Z. Zheng, H. Gao, J. Ma, X. Qin, SnO2/graphene composite as highly reversible anode materials for lithium ion batteries. J. Power Sources 240, 149–154 (2013)CrossRef Q. Guo, Z. Zheng, H. Gao, J. Ma, X. Qin, SnO2/graphene composite as highly reversible anode materials for lithium ion batteries. J. Power Sources 240, 149–154 (2013)CrossRef
23.
Zurück zum Zitat G.D. Jiang, Z.F. Lin, C. Chen, L.H. Zhu, Q. Chang, N. Wang, W. Wei, H.Q. Tang, TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants. Carbon 49, 2693–2701 (2011)CrossRef G.D. Jiang, Z.F. Lin, C. Chen, L.H. Zhu, Q. Chang, N. Wang, W. Wei, H.Q. Tang, TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants. Carbon 49, 2693–2701 (2011)CrossRef
24.
Zurück zum Zitat X. Liu, M. Wu, M. Li, X. Pan, J. Chen, X. Bao, Facile encapsulation of nanosized SnO2 particles in carbon nanotubes as an efficient anode of Li-ion batteries. J. Mater. Chem. A 1, 9527–9535 (2013)CrossRef X. Liu, M. Wu, M. Li, X. Pan, J. Chen, X. Bao, Facile encapsulation of nanosized SnO2 particles in carbon nanotubes as an efficient anode of Li-ion batteries. J. Mater. Chem. A 1, 9527–9535 (2013)CrossRef
25.
Zurück zum Zitat S. Yang, W. Yue, J. Zhu, Y. Ren, X. Yan, Graphene-based mesoporous SnO2 with enhanced electrochemical performance for lithium-ion batteries. Adv. Funct. Mater. 23, 3570–3576 (2013)CrossRef S. Yang, W. Yue, J. Zhu, Y. Ren, X. Yan, Graphene-based mesoporous SnO2 with enhanced electrochemical performance for lithium-ion batteries. Adv. Funct. Mater. 23, 3570–3576 (2013)CrossRef
26.
Zurück zum Zitat Y.G. Zhu, Y. Wang, J. Xie, G.S. Cao, T.-J. Zhu, X. Zhao, H.Y. Yang, Effects of graphene oxide function groups on SnO2/graphene nanocomposites for lithium storage application. Electrochim. Acta 154, 338–344 (2015)CrossRef Y.G. Zhu, Y. Wang, J. Xie, G.S. Cao, T.-J. Zhu, X. Zhao, H.Y. Yang, Effects of graphene oxide function groups on SnO2/graphene nanocomposites for lithium storage application. Electrochim. Acta 154, 338–344 (2015)CrossRef
27.
Zurück zum Zitat J. Su, Y. Chia, M.T. Tan, P.S. Khiew, J.K. Chin, H. Lee, D.C.S. Bien, A.S. Teh, C.W. Siong, Facile synthesis of few-layer graphene by mild solvent thermal exfoliation of highly oriented pyrolytic graphite. Chem. Eng. J. 231, 1–11 (2013)CrossRef J. Su, Y. Chia, M.T. Tan, P.S. Khiew, J.K. Chin, H. Lee, D.C.S. Bien, A.S. Teh, C.W. Siong, Facile synthesis of few-layer graphene by mild solvent thermal exfoliation of highly oriented pyrolytic graphite. Chem. Eng. J. 231, 1–11 (2013)CrossRef
28.
Zurück zum Zitat J. Hodkiewicz, Characterizing Graphene with Raman Spectroscopy (Thermo Fisher Scientific, Madison, 2010) J. Hodkiewicz, Characterizing Graphene with Raman Spectroscopy (Thermo Fisher Scientific, Madison, 2010)
29.
Zurück zum Zitat X. Fu, X. Song, Y. Zhang, Facile preparation of graphene sheets from synthetic graphite. Mater. Lett. 70, 181–184 (2012)CrossRef X. Fu, X. Song, Y. Zhang, Facile preparation of graphene sheets from synthetic graphite. Mater. Lett. 70, 181–184 (2012)CrossRef
30.
Zurück zum Zitat M.Z. Iqbal, F. Wang, H. Zhao, M.Y. Rafique, J. Wang, Q. Li, Structural and electrochemical properties of SnO nanoflowers as an anode material for lithium ion batteries. Scripta Mater. 67, 665–668 (2012)CrossRef M.Z. Iqbal, F. Wang, H. Zhao, M.Y. Rafique, J. Wang, Q. Li, Structural and electrochemical properties of SnO nanoflowers as an anode material for lithium ion batteries. Scripta Mater. 67, 665–668 (2012)CrossRef
31.
Zurück zum Zitat K. Satheesh, R. Jayave, Synthesis and electrochemical properties of reduced graphene oxide via chemical reduction using thiourea as a reducing agent. Mater. Lett. 113, 5–8 (2013)CrossRef K. Satheesh, R. Jayave, Synthesis and electrochemical properties of reduced graphene oxide via chemical reduction using thiourea as a reducing agent. Mater. Lett. 113, 5–8 (2013)CrossRef
32.
Zurück zum Zitat P. Lian, J. Wang, D. Cai, L. Ding, Q. Jia, H. Wang, Porous SnO2@C/graphene nanocomposite with 3D carbon conductive network as a superior anode material for lithium-ion batteries. Electrochim. Acta 116, 103–110 (2014)CrossRef P. Lian, J. Wang, D. Cai, L. Ding, Q. Jia, H. Wang, Porous SnO2@C/graphene nanocomposite with 3D carbon conductive network as a superior anode material for lithium-ion batteries. Electrochim. Acta 116, 103–110 (2014)CrossRef
33.
Zurück zum Zitat M. Aziz, S.S. Abbas, W.R. Baharom, W. Zuraidah, W. Mahmud, Structure of SnO2 nanoparticles by sol–gel method. Mater. Lett. 74, 62–64 (2012)CrossRef M. Aziz, S.S. Abbas, W.R. Baharom, W. Zuraidah, W. Mahmud, Structure of SnO2 nanoparticles by sol–gel method. Mater. Lett. 74, 62–64 (2012)CrossRef
34.
Zurück zum Zitat Y. Geng, S.J. Wang, J.-K. Kim, Preparation of graphite nanoplatelets and graphene sheets. J. Colloid Interface Sci. 336, 592–598 (2009)CrossRef Y. Geng, S.J. Wang, J.-K. Kim, Preparation of graphite nanoplatelets and graphene sheets. J. Colloid Interface Sci. 336, 592–598 (2009)CrossRef
35.
Zurück zum Zitat H.C. Schniepp, J. Li, M.J. Mcallister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud’homme, R. Car, D.A. Saville, I.A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110, 8535–8539 (2006)CrossRef H.C. Schniepp, J. Li, M.J. Mcallister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud’homme, R. Car, D.A. Saville, I.A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110, 8535–8539 (2006)CrossRef
36.
Zurück zum Zitat A.Y. Shenouda, H.K. Liu, Preparation, characterization, and electrochemical performance of Li2CuSnO4 and Li2CuSnSiO6 electrodes for lithium batteries. J. Electrochem. Soc. 157, A1183–A1187 (2010)CrossRef A.Y. Shenouda, H.K. Liu, Preparation, characterization, and electrochemical performance of Li2CuSnO4 and Li2CuSnSiO6 electrodes for lithium batteries. J. Electrochem. Soc. 157, A1183–A1187 (2010)CrossRef
37.
Zurück zum Zitat X. Zhu, Y. Zhu, S. Murali, M.D. Stoller, R.S. Ruof, Reduced graphene oxide/tin oxide composite as an enhanced anode material for lithium ion batteries prepared by homogenous co-precipitation. J. Power Sources 196, 6473–6477 (2011)CrossRef X. Zhu, Y. Zhu, S. Murali, M.D. Stoller, R.S. Ruof, Reduced graphene oxide/tin oxide composite as an enhanced anode material for lithium ion batteries prepared by homogenous co-precipitation. J. Power Sources 196, 6473–6477 (2011)CrossRef
Metadaten
Titel
A study on graphene/tin oxide performance as negative electrode compound for lithium battery application
verfasst von
Atef Y. Shenouda
Anton A. Momchilov
Publikationsdatum
31.10.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 1/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-0265-9

Weitere Artikel der Ausgabe 1/2019

Journal of Materials Science: Materials in Electronics 1/2019 Zur Ausgabe

Neuer Inhalt