Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

07.12.2015 | Methodologies and Application | Ausgabe 10/2017

Soft Computing 10/2017

A study on intrusion detection using neural networks trained with evolutionary algorithms

Zeitschrift:
Soft Computing > Ausgabe 10/2017
Autor:
Tirtharaj Dash
Wichtige Hinweise
Communicated by V. Loia.

Electronic supplementary material

The online version of this article (doi:10.​1007/​s00500-015-1967-z) contains supplementary material, which is available to authorized users.

Abstract

Intrusion detection has been playing a crucial role for making a computer network secure for any transaction. An intrusion detection system (IDS) detects various types of malicious network traffic and computer usage, which sometimes may not be detected by a conventional firewall. Recently, many IDS have been developed based on machine learning techniques. Specifically, advanced detection approaches created by combining or integrating evolutionary algorithms and neural networks have shown better detection performance than general machine learning approaches. The present study reports two new hybrid intrusion detection methods; one is based on gravitational search (GS), and other one is a combination of GS and particle swarm optimization (GSPSO). These two techniques have been successfully implemented to train artificial neural network (ANN) and the resulting models: GS-ANN and GSPSO-ANN are successfully applied for intrusion detection process. The applicability of these proposed approaches is also compared with other conventional methods such as decision tree, ANN based on gradient descent (GD-ANN), ANN based on genetic algorithm (GA-ANN) and ANN based on PSO (PSO-ANN) by testing with NSL-KDD dataset. Moreover, the results obtained by GS-ANN and GSPSO-ANN are found to be statistically significant based on the popular Wilcoxon’s rank sum test as compared to other conventional techniques. The obtained test results reported that the proposed GS-ANN and GSPSO-ANN could achieve a maximum detection accuracy of 94.9 and 98.13 % respectively. The proposed models (GS-ANN and GSPSO-ANN) could also achieve good performance when tested with highly imbalanced datasets.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Zusatzmaterial
Nur für berechtigte Nutzer zugänglich
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 10/2017

Soft Computing 10/2017 Zur Ausgabe

Premium Partner

    Bildnachweise