Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 8/2018

12.07.2018

A Study on Thermal Conductivity and Stability of Nanofluids Containing Chemically Synthesized Nanoparticles for Advanced Thermal Applications

verfasst von: Sujoy Das, Krishnan Bandyopadhyay, M. M. Ghosh

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 8/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study presents easy methods of synthesizing silver (Ag) and copper (Cu) nanoparticles through chemical route in an aqueous medium under atmospheric condition at ambient temperature. The synthesized nanoparticles have been characterized with different techniques, such as x-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, high-resolution transmission electron microscopy, UV–visible spectroscopy and dynamic light scattering measurements. Experimental observations have revealed the absence of any metal oxide layer around the nanoparticles which are found to remain stable under ambient conditions. The featured properties, such as narrow size distribution, stability, make these nanoparticles potential candidates for the synthesis of effective nanofluids. The nanofluids have been prepared by dispersing the nanoparticles synthesized through chemical route in a suitable base fluid. The thermal conductivity of nanofluids with different nanoparticles loading has been measured by transient hot-wire method, and the results have shown that the increasing trend of enhancement in thermal conductivity with respect to nanoparticles concentration is attainable only when the nanoparticles concentration is below some limiting value depending on the type of nanofluid. Beyond this limiting value of loading, the thermal conductivity of the nanofluid decreases due to pronounced agglomeration effect. The measurements of thermal conductivity of nanofluids over varying temperatures for a given volume fraction loading of nanoparticles have shown that the thermal conductivity increases markedly with the increase in temperature. Hence, nanofluids are likely to be much more promising at high-temperature applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J.C. Maxwell, A Treatise on Electricity and Magnetism, 2nd ed., Oxford University Press, Cambridge, 1904, p 435–441 J.C. Maxwell, A Treatise on Electricity and Magnetism, 2nd ed., Oxford University Press, Cambridge, 1904, p 435–441
2.
Zurück zum Zitat S.U.S. Choi, Nanofluids: From Vision to Reality Through Research, J. Heat Transf., 2009, 131, p 033106–033109CrossRef S.U.S. Choi, Nanofluids: From Vision to Reality Through Research, J. Heat Transf., 2009, 131, p 033106–033109CrossRef
3.
Zurück zum Zitat S.A. Kumar, K.S. Meenakshi, B.R.V. Narashimhan, S. Srikanth, and G. Arthanareeswaran, Synthesis and Characterization of Copper Nanofluid by a Novel One-Step Method, Mater. Chem. Phys., 2009, 113, p 57–62CrossRef S.A. Kumar, K.S. Meenakshi, B.R.V. Narashimhan, S. Srikanth, and G. Arthanareeswaran, Synthesis and Characterization of Copper Nanofluid by a Novel One-Step Method, Mater. Chem. Phys., 2009, 113, p 57–62CrossRef
4.
Zurück zum Zitat X. Wang, X. Xu, and S.U.S. Choi, Thermal Conductivity of Nanoparticle Fluid Mixture, J. Thermophys. Heat Transf., 1999, 13, p 474–480CrossRef X. Wang, X. Xu, and S.U.S. Choi, Thermal Conductivity of Nanoparticle Fluid Mixture, J. Thermophys. Heat Transf., 1999, 13, p 474–480CrossRef
5.
Zurück zum Zitat S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, and E.A. Grulke, Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions, Appl. Phys. Lett., 2001, 79, p 2252–2254CrossRef S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, and E.A. Grulke, Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions, Appl. Phys. Lett., 2001, 79, p 2252–2254CrossRef
6.
Zurück zum Zitat J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, and L.J. Thompson, Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles, Appl. Phys. Lett., 2001, 78, p 718–720CrossRef J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, and L.J. Thompson, Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles, Appl. Phys. Lett., 2001, 78, p 718–720CrossRef
7.
Zurück zum Zitat A.A. Avramenko, I.V. Shevchuk, A.I. Tyrinov, and D.G. Blinov, Heat Transfer in Stable Film Boiling of a Nanofluid Over a Vertical Surface, Int. J. Therm. Sci., 2015, 92, p 106–118CrossRef A.A. Avramenko, I.V. Shevchuk, A.I. Tyrinov, and D.G. Blinov, Heat Transfer in Stable Film Boiling of a Nanofluid Over a Vertical Surface, Int. J. Therm. Sci., 2015, 92, p 106–118CrossRef
8.
Zurück zum Zitat A. Moghadassi, E. Ghomi, and F. Parvizian, A Numerical Study of Water Based Al2O3 and Al2O3-Cu Hybrid Nanofluid Effect on Forced Convective Heat Transfer, Int. J. Therm. Sci., 2015, 92, p 50–57CrossRef A. Moghadassi, E. Ghomi, and F. Parvizian, A Numerical Study of Water Based Al2O3 and Al2O3-Cu Hybrid Nanofluid Effect on Forced Convective Heat Transfer, Int. J. Therm. Sci., 2015, 92, p 50–57CrossRef
9.
Zurück zum Zitat S.K. Das, N. Putra, P. Thiesen, and W. Roetzel, Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids, ASME J. Heat Transf., 2003, 125, p 567–574CrossRef S.K. Das, N. Putra, P. Thiesen, and W. Roetzel, Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids, ASME J. Heat Transf., 2003, 125, p 567–574CrossRef
10.
Zurück zum Zitat S.M. You, J.H. Kim, and K.H. Kim, Effect of Nanoparticles on Critical Heat flux of Water in Pool Boiling Heat Transfer, Appl. Phys. Lett., 2003, 83, p 3374–3376CrossRef S.M. You, J.H. Kim, and K.H. Kim, Effect of Nanoparticles on Critical Heat flux of Water in Pool Boiling Heat Transfer, Appl. Phys. Lett., 2003, 83, p 3374–3376CrossRef
11.
Zurück zum Zitat A. Ghadimi, R. Saidur, and H.S.C. Metselaar, A Review of Nanofluid Stability Properties and Characterization in Stationary Conditions, Int. J. Heat Mass Transf., 2011, 54, p 4051–4068CrossRef A. Ghadimi, R. Saidur, and H.S.C. Metselaar, A Review of Nanofluid Stability Properties and Characterization in Stationary Conditions, Int. J. Heat Mass Transf., 2011, 54, p 4051–4068CrossRef
12.
Zurück zum Zitat N.A. Dhas, C.P. Raj, and A. Gedanken, Synthesis, Characterization and Properties of Metallic Copper Nanoparticles, Chem. Mater., 1998, 10, p 1446–1452CrossRef N.A. Dhas, C.P. Raj, and A. Gedanken, Synthesis, Characterization and Properties of Metallic Copper Nanoparticles, Chem. Mater., 1998, 10, p 1446–1452CrossRef
13.
Zurück zum Zitat I. Lisiecki, F. Billoudet, and M.P. Pileni, Control of the Shape and the Size of Copper Metallic Particles, J. Phys. Chem., 1996, 100, p 4160–4166CrossRef I. Lisiecki, F. Billoudet, and M.P. Pileni, Control of the Shape and the Size of Copper Metallic Particles, J. Phys. Chem., 1996, 100, p 4160–4166CrossRef
14.
Zurück zum Zitat P.J. Jorge, P.S. Isabel, M.L.M. Luis, and M. Paul, Gold Nanorods: Synthesis, Characterization and Applications, Coord. Chem. Rev., 2005, 249, p 1870–1901CrossRef P.J. Jorge, P.S. Isabel, M.L.M. Luis, and M. Paul, Gold Nanorods: Synthesis, Characterization and Applications, Coord. Chem. Rev., 2005, 249, p 1870–1901CrossRef
15.
Zurück zum Zitat X. Zou, E. Ying, and S. Dong, Seed-Mediated Synthesis of Branched Gold Nanoparticles with the Assistance of Citrate and Their Surface Enhanced Raman Scattering Properties, Nanotechnology, 2006, 17, p 4758–4764CrossRef X. Zou, E. Ying, and S. Dong, Seed-Mediated Synthesis of Branched Gold Nanoparticles with the Assistance of Citrate and Their Surface Enhanced Raman Scattering Properties, Nanotechnology, 2006, 17, p 4758–4764CrossRef
16.
Zurück zum Zitat S. Mehta, S. Kumar, S. Chaudhary, K.K. Bhasin, and M. Gradzielski, Evolution of ZnS Nanoparticles via Facile CTAB Aqueous Micellar Solution Route: A Study on Controlling Parameters, Nanoscale Res. Lett., 2009, 4, p 17–28CrossRef S. Mehta, S. Kumar, S. Chaudhary, K.K. Bhasin, and M. Gradzielski, Evolution of ZnS Nanoparticles via Facile CTAB Aqueous Micellar Solution Route: A Study on Controlling Parameters, Nanoscale Res. Lett., 2009, 4, p 17–28CrossRef
17.
Zurück zum Zitat V.K. Balakrishnan, X. Han, W.G.W. VanLoon, J.M. Dust, J. Toullec, and E. Buncel, Acceleration of Nucleophilic Attack on an Organophosphorothioate Neurotoxin, Fenitrothion, by Reactive Counterion Cationic Micelles. Regioselectivity as a Probe of Substrate Orientation Within the Micelle, Langmuir, 2004, 20, p 6586–6593CrossRef V.K. Balakrishnan, X. Han, W.G.W. VanLoon, J.M. Dust, J. Toullec, and E. Buncel, Acceleration of Nucleophilic Attack on an Organophosphorothioate Neurotoxin, Fenitrothion, by Reactive Counterion Cationic Micelles. Regioselectivity as a Probe of Substrate Orientation Within the Micelle, Langmuir, 2004, 20, p 6586–6593CrossRef
18.
Zurück zum Zitat L.P. Wang and G.Y. Hong, A New Preparation of Zinc Sulfide Nanoparticles by Solid-State Method at Low Temperature, Mater. Res. Bull., 2000, 35, p 695–701CrossRef L.P. Wang and G.Y. Hong, A New Preparation of Zinc Sulfide Nanoparticles by Solid-State Method at Low Temperature, Mater. Res. Bull., 2000, 35, p 695–701CrossRef
19.
Zurück zum Zitat E.S. Platunov, I.V. Baranov, S.E. Buravoi, and V.V. Kurepin (E.S. Platunov Ed.), Thermophysical Measurements: A Manual, SPbGUN and PT, St. Petersburg, 2010 (in Russian) E.S. Platunov, I.V. Baranov, S.E. Buravoi, and V.V. Kurepin (E.S. Platunov Ed.), Thermophysical Measurements: A Manual, SPbGUN and PT, St. Petersburg, 2010 (in Russian)
20.
Zurück zum Zitat Y. Xuan and W. Roetzel, Conceptions for Heat Transfer Correlation of Nanofluids, Int. J. Heat Mass Transf., 2000, 43, p 3701–3707CrossRef Y. Xuan and W. Roetzel, Conceptions for Heat Transfer Correlation of Nanofluids, Int. J. Heat Mass Transf., 2000, 43, p 3701–3707CrossRef
21.
Zurück zum Zitat C.J. Yu, A.G. Richter, A. Datta, M.K. Durbin, and P. Dutta, Molecular Layering in a Liquid on a Solid Substrate: An X-Ray Reflectivity Study, Physica B, 2000, 283, p 27–31CrossRef C.J. Yu, A.G. Richter, A. Datta, M.K. Durbin, and P. Dutta, Molecular Layering in a Liquid on a Solid Substrate: An X-Ray Reflectivity Study, Physica B, 2000, 283, p 27–31CrossRef
22.
Zurück zum Zitat A.A. Joshi and A. Majumdar, Transient Ballistic and Diffusive Phonon Heat Transport in Thin Films, J. Appl. Phys., 1993, 74, p 31–39CrossRef A.A. Joshi and A. Majumdar, Transient Ballistic and Diffusive Phonon Heat Transport in Thin Films, J. Appl. Phys., 1993, 74, p 31–39CrossRef
23.
Zurück zum Zitat C.W. Shon and M.M. Chen, Microconvective Thermal Conductivity in Disperse Two-Phase Mixture as Observed in a Low Velocity Couette Flow Experiment, ASME J. Heat Transf., 1981, 103, p 47–51CrossRef C.W. Shon and M.M. Chen, Microconvective Thermal Conductivity in Disperse Two-Phase Mixture as Observed in a Low Velocity Couette Flow Experiment, ASME J. Heat Transf., 1981, 103, p 47–51CrossRef
24.
Zurück zum Zitat J.C. Maxwell-Garnett, Colours in Metal Glasses and in Metallic Films, Philos. Trans. R. Soc. Lond. Ser. A, 1904, 203, p 385–420CrossRef J.C. Maxwell-Garnett, Colours in Metal Glasses and in Metallic Films, Philos. Trans. R. Soc. Lond. Ser. A, 1904, 203, p 385–420CrossRef
25.
Zurück zum Zitat G. Paul, S. Sarkar, T. Pal, P.K. Das, and I. Manna, Concentration and Size Dependence of Nano-Silver Dispersed Water Based Nanofluids, J. Colloid Interface Sci., 2012, 371, p 20–27CrossRef G. Paul, S. Sarkar, T. Pal, P.K. Das, and I. Manna, Concentration and Size Dependence of Nano-Silver Dispersed Water Based Nanofluids, J. Colloid Interface Sci., 2012, 371, p 20–27CrossRef
26.
Zurück zum Zitat J. Philip, P.D. Sharma, and B. Raj, Evidence for Enhanced Thermal Conduction Through Percolating Structures in Nanofluids, Nanotechnology, 2008, 19, p 305706CrossRef J. Philip, P.D. Sharma, and B. Raj, Evidence for Enhanced Thermal Conduction Through Percolating Structures in Nanofluids, Nanotechnology, 2008, 19, p 305706CrossRef
27.
Zurück zum Zitat M.S. Liu, M.C.C. Lin, C.Y. Tsai, and C.C. Wang, Enhancement of Thermal Conductivity with Cu for Nanofluids Using Chemical Reduction Method, Int. J. Heat Mass Transf., 2006, 49, p 3028–3033CrossRef M.S. Liu, M.C.C. Lin, C.Y. Tsai, and C.C. Wang, Enhancement of Thermal Conductivity with Cu for Nanofluids Using Chemical Reduction Method, Int. J. Heat Mass Transf., 2006, 49, p 3028–3033CrossRef
28.
Zurück zum Zitat S.K. Das, N. Putra, and W. Roetzel, Pool Boiling Characteristics of Nano-fluids, Int. J. Heat Mass Transf., 2003, 46, p 851–862CrossRef S.K. Das, N. Putra, and W. Roetzel, Pool Boiling Characteristics of Nano-fluids, Int. J. Heat Mass Transf., 2003, 46, p 851–862CrossRef
29.
Zurück zum Zitat K.S. Hong, T.K. Hong, and H.S. Yang, Thermal Conductivity of Fe Nanofluids Depending on the Cluster Size of Nanoparticles, Appl. Phys. Lett., 2006, 88, p 031901CrossRef K.S. Hong, T.K. Hong, and H.S. Yang, Thermal Conductivity of Fe Nanofluids Depending on the Cluster Size of Nanoparticles, Appl. Phys. Lett., 2006, 88, p 031901CrossRef
30.
Zurück zum Zitat Y. Xuan and Q. Li, Heat Transfer Enhancement of Nanofluids, Int. J. Heat Fluid Flow, 2000, 21, p 58–64CrossRef Y. Xuan and Q. Li, Heat Transfer Enhancement of Nanofluids, Int. J. Heat Fluid Flow, 2000, 21, p 58–64CrossRef
31.
Zurück zum Zitat J. Philip, P.D. Shima, and B. Raj, Enhancement of Thermal Conductivity in Magnetite Based Nanofluid Due to Chainlike Structures, Appl. Phys. Lett., 2007, 91, p 203108CrossRef J. Philip, P.D. Shima, and B. Raj, Enhancement of Thermal Conductivity in Magnetite Based Nanofluid Due to Chainlike Structures, Appl. Phys. Lett., 2007, 91, p 203108CrossRef
32.
Zurück zum Zitat Y.H. Li, W. Qu, and J.C. Feng, Temperature Dependence of Thermal Conductivity of Nanofluids, Chin. Phys. Lett., 2008, 25, p 3319–3322CrossRef Y.H. Li, W. Qu, and J.C. Feng, Temperature Dependence of Thermal Conductivity of Nanofluids, Chin. Phys. Lett., 2008, 25, p 3319–3322CrossRef
33.
Zurück zum Zitat H.E. Patel, S.K. Das, T. Sundararajan, A.S. Nair, B. George, and T. Pradeep, Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects, Appl. Phys. Lett., 2003, 83, p 2931–2933CrossRef H.E. Patel, S.K. Das, T. Sundararajan, A.S. Nair, B. George, and T. Pradeep, Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects, Appl. Phys. Lett., 2003, 83, p 2931–2933CrossRef
34.
Zurück zum Zitat S. Mukherjee and S. Paira, Preparation and Stability of Nanofluids: A Review, IOSR J. Mech. Civ. Eng., 2013, 9, p 63–69CrossRef S. Mukherjee and S. Paira, Preparation and Stability of Nanofluids: A Review, IOSR J. Mech. Civ. Eng., 2013, 9, p 63–69CrossRef
35.
Zurück zum Zitat R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, and H. Tyagi, Small Particles, Big Impacts: A Review of the Diverse Applications of Nanofluids, J. Appl. Phys., 2013, 113, p 011301CrossRef R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, and H. Tyagi, Small Particles, Big Impacts: A Review of the Diverse Applications of Nanofluids, J. Appl. Phys., 2013, 113, p 011301CrossRef
Metadaten
Titel
A Study on Thermal Conductivity and Stability of Nanofluids Containing Chemically Synthesized Nanoparticles for Advanced Thermal Applications
verfasst von
Sujoy Das
Krishnan Bandyopadhyay
M. M. Ghosh
Publikationsdatum
12.07.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 8/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3506-4

Weitere Artikel der Ausgabe 8/2018

Journal of Materials Engineering and Performance 8/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.