Skip to main content
Erschienen in: Wireless Networks 8/2015

01.11.2015

A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges

verfasst von: Yong Niu, Yong Li, Depeng Jin, Li Su, Athanasios V. Vasilakos

Erschienen in: Wireless Networks | Ausgabe 8/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the explosive growth of mobile data demand, the fifth generation (5G) mobile network would exploit the enormous amount of spectrum in the millimeter wave (mmWave) bands to greatly increase communication capacity. There are fundamental differences between mmWave communications and existing other communication systems, in terms of high propagation loss, directivity, and sensitivity to blockage. These characteristics of mmWave communications pose several challenges to fully exploit the potential of mmWave communications, including integrated circuits and system design, interference management, spatial reuse, anti-blockage, and dynamics control. To address these challenges, we carry out a survey of existing solutions and standards, and propose design guidelines in architectures and protocols for mmWave communications. We also discuss the potential applications of mmWave communications in the 5G network, including the small cell access, the cellular access, and the wireless backhaul. Finally, we discuss relevant open research issues including the new physical layer technology, software-defined network architecture, measurements of network state information, efficient control mechanisms, and heterogeneous networking, which should be further investigated to facilitate the deployment of mmWave communication systems in the future 5G networks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Elkashlan, M., Duong, T. Q., & Chen, H.-H. (2014). Millimeter-wave communications for 5G: Fundamentals: Part I [Guest Editorial]. IEEE Communications Magazine, 52(9), 52–54.CrossRef Elkashlan, M., Duong, T. Q., & Chen, H.-H. (2014). Millimeter-wave communications for 5G: Fundamentals: Part I [Guest Editorial]. IEEE Communications Magazine, 52(9), 52–54.CrossRef
2.
Zurück zum Zitat Elkashlan, M., Duong, T. Q., & Chen, H.-H. (2015). Millimeter-wave communications for 5G-Part 2: Applications. IEEE Communications Magazine, 53(1), 166–167.CrossRef Elkashlan, M., Duong, T. Q., & Chen, H.-H. (2015). Millimeter-wave communications for 5G-Part 2: Applications. IEEE Communications Magazine, 53(1), 166–167.CrossRef
3.
Zurück zum Zitat Doan, C. H., Emami, S., Sobel, D. A., Niknejad, A. M., & Brodersen, R. W. (2004). Design considerations for 60 GHz CMOS radios. IEEE Communications Magazine, 42(12), 132–140.CrossRef Doan, C. H., Emami, S., Sobel, D. A., Niknejad, A. M., & Brodersen, R. W. (2004). Design considerations for 60 GHz CMOS radios. IEEE Communications Magazine, 42(12), 132–140.CrossRef
4.
Zurück zum Zitat Gutierrez, F., Agarwal, S., Parrish, K., & Rappaport, T. S. (2009). On-chip integrated antenna structures in CMOS for 60 GHz WPAN systems. IEEE Journal on Selected Areas in Communications, 27(8), 1367–1378.CrossRef Gutierrez, F., Agarwal, S., Parrish, K., & Rappaport, T. S. (2009). On-chip integrated antenna structures in CMOS for 60 GHz WPAN systems. IEEE Journal on Selected Areas in Communications, 27(8), 1367–1378.CrossRef
5.
Zurück zum Zitat Rappaport, T. S., Murdock, J. N., & Gutierrez, F. (2011). State of the art in 60-GHz integrated circuits and systems for wireless communications. Proceedings of the IEEE, 99(8), 1390–1436.CrossRef Rappaport, T. S., Murdock, J. N., & Gutierrez, F. (2011). State of the art in 60-GHz integrated circuits and systems for wireless communications. Proceedings of the IEEE, 99(8), 1390–1436.CrossRef
6.
Zurück zum Zitat ECMC TC48, ECMA standard 387. (2008). High rate 60 GHz PHY, MAC and HDMI PAL. ECMC TC48, ECMA standard 387. (2008). High rate 60 GHz PHY, MAC and HDMI PAL.
7.
Zurück zum Zitat Ajorloo, H., & Manzuri-Shalmani, M. T. (2013). Modeling beacon period length of the UWB and 60-GHz mmWave WPANs based on ECMA-368 and ECMA-387 standards. IEEE Transactions on Mobile Computing, 12(6), 1201–1213.CrossRef Ajorloo, H., & Manzuri-Shalmani, M. T. (2013). Modeling beacon period length of the UWB and 60-GHz mmWave WPANs based on ECMA-368 and ECMA-387 standards. IEEE Transactions on Mobile Computing, 12(6), 1201–1213.CrossRef
9.
Zurück zum Zitat Draft Standard for Information Technology-Telecommunications and Information Exchange Between Systems-Local and Metropolitan Area Networks-Specific Requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications-Amendment 4: Enhancements for Very High Throughput in the 60 GHz Band, IEEE P802.11ad/D9.0, Oct. 2012. Draft Standard for Information Technology-Telecommunications and Information Exchange Between Systems-Local and Metropolitan Area Networks-Specific Requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications-Amendment 4: Enhancements for Very High Throughput in the 60 GHz Band, IEEE P802.11ad/D9.0, Oct. 2012.
10.
Zurück zum Zitat Khan, F., & Pi, Z. (2011). Millimeter wave mobile broadband (MMB): Unleashing the 3–300 GHz spectrum. In IEEE wireless communications network conference. Khan, F., & Pi, Z. (2011). Millimeter wave mobile broadband (MMB): Unleashing the 3–300 GHz spectrum. In IEEE wireless communications network conference.
11.
Zurück zum Zitat Khan, F., & Pi, Z. (2011). An introduction to millimeter wave mobile broadband systems. IEEE Communications Magazine, 49(6), 101–107.CrossRef Khan, F., & Pi, Z. (2011). An introduction to millimeter wave mobile broadband systems. IEEE Communications Magazine, 49(6), 101–107.CrossRef
12.
Zurück zum Zitat Pietraski, P., Britz, D., Roy, A., Pragada, R., & Charlton, G. (2012). Millimeter wave and terahertz communications: Feasibility and challenges. ZTE Communications, 10(4), 3–12. Pietraski, P., Britz, D., Roy, A., Pragada, R., & Charlton, G. (2012). Millimeter wave and terahertz communications: Feasibility and challenges. ZTE Communications, 10(4), 3–12.
13.
Zurück zum Zitat Rangan, S., Rappaport, T. S., & Erkip, E. (2014). Millimeter-wave cellular wireless networks: Potentials and challenges. Proceedings of the IEEE, 102(3), 366–385.CrossRef Rangan, S., Rappaport, T. S., & Erkip, E. (2014). Millimeter-wave cellular wireless networks: Potentials and challenges. Proceedings of the IEEE, 102(3), 366–385.CrossRef
14.
Zurück zum Zitat Singh, S., Mudumbai, R., & Madhow, U. (2011). Interference analysis for highly directional 60-GHz mesh networks: The case for rethinking medium access control. IEEE/ACM Transactions on Networking (TON), 19(5), 1513–1527.CrossRef Singh, S., Mudumbai, R., & Madhow, U. (2011). Interference analysis for highly directional 60-GHz mesh networks: The case for rethinking medium access control. IEEE/ACM Transactions on Networking (TON), 19(5), 1513–1527.CrossRef
15.
Zurück zum Zitat Yu, M., Rexford, J., Freedman, M. J., & Wang, J. (2010). Scalable flow-based networking with DIFANE. ACM SIGCOMM Computer Communication Review, 41(4), 351–362.CrossRef Yu, M., Rexford, J., Freedman, M. J., & Wang, J. (2010). Scalable flow-based networking with DIFANE. ACM SIGCOMM Computer Communication Review, 41(4), 351–362.CrossRef
16.
Zurück zum Zitat Zhao, Q., & Li, J. (2006). Rain attenuation in millimeter wave ranges. In Proceedings of the IEEE international Symposium antennas, propagation EM theory (pp. 1–4). Zhao, Q., & Li, J. (2006). Rain attenuation in millimeter wave ranges. In Proceedings of the IEEE international Symposium antennas, propagation EM theory (pp. 1–4).
17.
Zurück zum Zitat Humpleman, R. J., & Watson, P. A. (1978). Investigation of attenuation by rainfall at 60 GHz. Proceedings of the Institution of Electrical Engineers, 125(2), 85–91.CrossRef Humpleman, R. J., & Watson, P. A. (1978). Investigation of attenuation by rainfall at 60 GHz. Proceedings of the Institution of Electrical Engineers, 125(2), 85–91.CrossRef
19.
Zurück zum Zitat Rappaport, T., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, 1, 335–349.CrossRef Rappaport, T., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, 1, 335–349.CrossRef
20.
Zurück zum Zitat Violette, E. J., Espeland, R. H., & Hand, G. R. (1985). Millimeter-wave urban and suburban propagation measurements using narrow and wide bandwidth channel probes. NTIA Report (pp. 85–184). Violette, E. J., Espeland, R. H., & Hand, G. R. (1985). Millimeter-wave urban and suburban propagation measurements using narrow and wide bandwidth channel probes. NTIA Report (pp. 85–184).
21.
Zurück zum Zitat Zwick, T., Beukema, T., & Nam, H. (2005). Wideband channel sounder with measurements and model for the 60 GHz indoor radio channel. IEEE Transactions on Vehicular Technology, 54(4), 1266–1277.CrossRef Zwick, T., Beukema, T., & Nam, H. (2005). Wideband channel sounder with measurements and model for the 60 GHz indoor radio channel. IEEE Transactions on Vehicular Technology, 54(4), 1266–1277.CrossRef
22.
Zurück zum Zitat Giannetti, F., Luise, M., & Reggiannini, R. (1999). Mobile and personal communications in 60 GHz band: A survey. Wireless Personal Communications, 10, 207–243.CrossRef Giannetti, F., Luise, M., & Reggiannini, R. (1999). Mobile and personal communications in 60 GHz band: A survey. Wireless Personal Communications, 10, 207–243.CrossRef
23.
Zurück zum Zitat Smulders, P., & Wagemans, A. (1992). Wideband indoor radio propagation measurements at 58 GHz. Electronics Letters, 28(13), 1270–1272.CrossRef Smulders, P., & Wagemans, A. (1992). Wideband indoor radio propagation measurements at 58 GHz. Electronics Letters, 28(13), 1270–1272.CrossRef
24.
Zurück zum Zitat Smulders, P. F. M., & Correia, L. M. (1997). Characterisation of propagation in 60 GHz radio channels. Electronics & Communication Engineering Journal, 9(2), 73–80.CrossRef Smulders, P. F. M., & Correia, L. M. (1997). Characterisation of propagation in 60 GHz radio channels. Electronics & Communication Engineering Journal, 9(2), 73–80.CrossRef
25.
Zurück zum Zitat Daniels, R., Murdock, J., Rappaport, T. S., & Heath, R. (2010). 60 GHz wireless: Up close and personal. IEEE Microwave Magazine, 11(7), 44–50.CrossRef Daniels, R., Murdock, J., Rappaport, T. S., & Heath, R. (2010). 60 GHz wireless: Up close and personal. IEEE Microwave Magazine, 11(7), 44–50.CrossRef
26.
Zurück zum Zitat Xu, H., Kukshya, V., & Rappaport, T. S. (2002). Spatial and temporal characteristics of 60 GHz indoor channel. IEEE Journal on Selected Areas in Communications, 20(3), 620–630.CrossRef Xu, H., Kukshya, V., & Rappaport, T. S. (2002). Spatial and temporal characteristics of 60 GHz indoor channel. IEEE Journal on Selected Areas in Communications, 20(3), 620–630.CrossRef
27.
Zurück zum Zitat Ben-Dor, E., Rappaport, T. S., Qiao, Y., & Lauffenburger, S. J. (2011). Millimeter wave 60 GHz outdoor and vehicle AOA propagation measurements using a broadband channel sounder. In Proceedings of the IEEE global telecommunications conference (pp. 1–6). Houston, USA. Ben-Dor, E., Rappaport, T. S., Qiao, Y., & Lauffenburger, S. J. (2011). Millimeter wave 60 GHz outdoor and vehicle AOA propagation measurements using a broadband channel sounder. In Proceedings of the IEEE global telecommunications conference (pp. 1–6). Houston, USA.
28.
Zurück zum Zitat Geng, S., Kivinen, J., Zhao, X., & Vainikainen, P. (2009). Millimeter-wave propagation channel characterization for short-range wireless communications. IEEE Transactions on Vehicular Technology, 58(1), 3–13.CrossRef Geng, S., Kivinen, J., Zhao, X., & Vainikainen, P. (2009). Millimeter-wave propagation channel characterization for short-range wireless communications. IEEE Transactions on Vehicular Technology, 58(1), 3–13.CrossRef
29.
Zurück zum Zitat Anderson, C. R., & Rappaport, T. S. (2004). In-building wideband partition loss measurements at 2.5 and 60 GHz. IEEE Transactions on Wireless Communications, 3(3), 922–928.CrossRef Anderson, C. R., & Rappaport, T. S. (2004). In-building wideband partition loss measurements at 2.5 and 60 GHz. IEEE Transactions on Wireless Communications, 3(3), 922–928.CrossRef
30.
Zurück zum Zitat Daniels, R. C., & Heath, R. W. (2007). 60 GHz wireless communications: Emerging requirements and design recommendations. IEEE Vehicular Technology Magazine, 2(3), 41–50.CrossRef Daniels, R. C., & Heath, R. W. (2007). 60 GHz wireless communications: Emerging requirements and design recommendations. IEEE Vehicular Technology Magazine, 2(3), 41–50.CrossRef
31.
Zurück zum Zitat Geng, S. Y., Kivinen, J., Zhao, X. W., & Vainikainen, P. (2009). Millimeter-wave propagation channel characterization for short-range wireless communications. IEEE Transactions on Vehicular Technology, 58(1), 3–13.CrossRef Geng, S. Y., Kivinen, J., Zhao, X. W., & Vainikainen, P. (2009). Millimeter-wave propagation channel characterization for short-range wireless communications. IEEE Transactions on Vehicular Technology, 58(1), 3–13.CrossRef
32.
Zurück zum Zitat Manabe, T., et al. (1995). Polarization dependence of multipath propagation and high-speed transmission characteristics of indoor millimeter-wave channel at 60 GHz. IEEE Transactions on Vehicular Technology, 44(2), 268–274.CrossRef Manabe, T., et al. (1995). Polarization dependence of multipath propagation and high-speed transmission characteristics of indoor millimeter-wave channel at 60 GHz. IEEE Transactions on Vehicular Technology, 44(2), 268–274.CrossRef
33.
Zurück zum Zitat Manabe, T., et al. (1996). Effects of antenna directivity and polarization on indoor multipath propagation characteristics at 60 GHz. IEEE Journal on Selected Areas in Communications, 14(3), 441–448.MathSciNetCrossRef Manabe, T., et al. (1996). Effects of antenna directivity and polarization on indoor multipath propagation characteristics at 60 GHz. IEEE Journal on Selected Areas in Communications, 14(3), 441–448.MathSciNetCrossRef
34.
Zurück zum Zitat Singh, S., Ziliotto, F., Madhow, U., Belding, E. M., & Rodwell, M. (2009). Blockage and directivity in 60 GHz wireless personal area networks: From cross-layer model to multi hop MAC design. IEEE Journal on Selected Areas in Communications, 27(8), 1400–1413.CrossRef Singh, S., Ziliotto, F., Madhow, U., Belding, E. M., & Rodwell, M. (2009). Blockage and directivity in 60 GHz wireless personal area networks: From cross-layer model to multi hop MAC design. IEEE Journal on Selected Areas in Communications, 27(8), 1400–1413.CrossRef
35.
Zurück zum Zitat MacCartney, G. R., & Rappaport, T. S. (2014). 73 GHz millimeter wave propagation measurements for outdoor urban mobile and backhaul communications in New York City. In Proceedings of the IEEE ICC 2014. MacCartney, G. R., & Rappaport, T. S. (2014). 73 GHz millimeter wave propagation measurements for outdoor urban mobile and backhaul communications in New York City. In Proceedings of the IEEE ICC 2014.
36.
Zurück zum Zitat Sun, S., et al. (2014). Millimeter wave multi-beam antenna combining for 5G cellular link improvement in New York City. In Proceedings of the IEEE ICC 2014. Sun, S., et al. (2014). Millimeter wave multi-beam antenna combining for 5G cellular link improvement in New York City. In Proceedings of the IEEE ICC 2014.
37.
Zurück zum Zitat Azar, Y., Wong, G. N., Wang, K., Mayzus, R., Schulz, J. K., Zhao, H., Gutierrez, F., Hwang, D., & Rappaport, T. S. (2013). 28 GHz propagation measurements for outdoor cellular communications using steerable beam antennas in New York City. In Proceedings of the IEEE international conference on communications (pp. 1–6). Azar, Y., Wong, G. N., Wang, K., Mayzus, R., Schulz, J. K., Zhao, H., Gutierrez, F., Hwang, D., & Rappaport, T. S. (2013). 28 GHz propagation measurements for outdoor cellular communications using steerable beam antennas in New York City. In Proceedings of the IEEE international conference on communications (pp. 1–6).
38.
Zurück zum Zitat Zhao, H., et al. (2013). 28 GHz millimeter wave cellular communication measurements for reflection and penetration loss in and around buildings in New York City. In Proceedings of the IEEE ICC (pp. 5163–5167). Zhao, H., et al. (2013). 28 GHz millimeter wave cellular communication measurements for reflection and penetration loss in and around buildings in New York City. In Proceedings of the IEEE ICC (pp. 5163–5167).
39.
Zurück zum Zitat Samimi, M. K. et al. (2013). 28 GHz angle of arrival and angle of departure analysis for outdoor cellular communications using steerable beam antennas in New York City. In Proceedings of the IEEE VTC (pp. 1–6). Samimi, M. K. et al. (2013). 28 GHz angle of arrival and angle of departure analysis for outdoor cellular communications using steerable beam antennas in New York City. In Proceedings of the IEEE VTC (pp. 1–6).
40.
Zurück zum Zitat Akdeniz, M. R., Liu, Y., Samimi, M. K., Sun, S., Rangan, S., Rappaport, T. S., et al. (2014). Millimeter wave channel modeling and cellular capacity evaluation. IEEE Journal on Selected Areas in Communications, 32(6), 1164–1179.CrossRef Akdeniz, M. R., Liu, Y., Samimi, M. K., Sun, S., Rangan, S., Rappaport, T. S., et al. (2014). Millimeter wave channel modeling and cellular capacity evaluation. IEEE Journal on Selected Areas in Communications, 32(6), 1164–1179.CrossRef
41.
Zurück zum Zitat Nguyen, H. C., Thomas, T., MacCartney, G. R. Jr., Rappaport, T. S., Vejlgaard, B., & Mogensen, P. (2014). Evaluation of empirical ray-tracing model for an urban outdoor scenario at 73 GHz E-Band. In 2014 IEEE 80th vehicular technology conference (VTC Fall) (pp. 1–6). Vancouver, BC. Nguyen, H. C., Thomas, T., MacCartney, G. R. Jr., Rappaport, T. S., Vejlgaard, B., & Mogensen, P. (2014). Evaluation of empirical ray-tracing model for an urban outdoor scenario at 73 GHz E-Band. In 2014 IEEE 80th vehicular technology conference (VTC Fall) (pp. 1–6). Vancouver, BC.
42.
Zurück zum Zitat Thomas, T. A., Nguyen, H. C., MacCartney, G. R., Jr., Rappaport, T. S. (2014). 3D mmWave channel model proposal. In 2014 IEEE 80th vehicular technology conference (VTC Fall) (pp. 1–6). Vancouver, BC. Thomas, T. A., Nguyen, H. C., MacCartney, G. R., Jr., Rappaport, T. S. (2014). 3D mmWave channel model proposal. In 2014 IEEE 80th vehicular technology conference (VTC Fall) (pp. 1–6). Vancouver, BC.
43.
Zurück zum Zitat Thomas, T. A., et al. (2013). 3D extension of the 3GPP/ITU channel model. In Proceedings of the IEEE VTC-Spring 2013. Thomas, T. A., et al. (2013). 3D extension of the 3GPP/ITU channel model. In Proceedings of the IEEE VTC-Spring 2013.
44.
Zurück zum Zitat Murdock, J. N., Ben-Dor, E., Qiao, Y., Tamir, J. I., & Rappaport, T. S. (2012). A 38 GHz cellular outage study for an urban campus environment. In Proceedings of the IEEE wireless communication networking conference (pp. 3085–3090). Murdock, J. N., Ben-Dor, E., Qiao, Y., Tamir, J. I., & Rappaport, T. S. (2012). A 38 GHz cellular outage study for an urban campus environment. In Proceedings of the IEEE wireless communication networking conference (pp. 3085–3090).
45.
Zurück zum Zitat Rappaport, T. S., Qiao, Y., Tamir, J. I., Murdock, J. N., & Ben-Dor, E. (2012). Cellular broadband millimeter wave propagation and angle of arrival for adaptive beam steering systems (invited paper). In Proceedings of the IEEE radio wireless Symposium (pp. 151–154). Rappaport, T. S., Qiao, Y., Tamir, J. I., Murdock, J. N., & Ben-Dor, E. (2012). Cellular broadband millimeter wave propagation and angle of arrival for adaptive beam steering systems (invited paper). In Proceedings of the IEEE radio wireless Symposium (pp. 151–154).
46.
Zurück zum Zitat Rappaport, T. S., Ben-Dor, E., Murdock, J. N., & Qiao, Y. (2012). 38 GHz and 60 GHz angle-dependent propagation for cellular and peer-to-peer wireless communications. In Proceedings of the IEEE international conference communication (pp. 4568–4573). Rappaport, T. S., Ben-Dor, E., Murdock, J. N., & Qiao, Y. (2012). 38 GHz and 60 GHz angle-dependent propagation for cellular and peer-to-peer wireless communications. In Proceedings of the IEEE international conference communication (pp. 4568–4573).
47.
Zurück zum Zitat Alalusi, S., & Brodersen, R. (2006). A 60 GHz phased array in CMOS. In Proceedings of the IEEE CICC (pp. 393–396). Alalusi, S., & Brodersen, R. (2006). A 60 GHz phased array in CMOS. In Proceedings of the IEEE CICC (pp. 393–396).
48.
Zurück zum Zitat Liu, D., & Sirdeshmukh, R. (2008). A patch array antenna for 60 GHz package applications. In Proceedings of the IEEE AP-S Symposium (pp. 1–4). Liu, D., & Sirdeshmukh, R. (2008). A patch array antenna for 60 GHz package applications. In Proceedings of the IEEE AP-S Symposium (pp. 1–4).
49.
Zurück zum Zitat Wang, J., Lan, Z., Pyo, C., Baykas, T., Sum, C., Rahman, M., et al. (2009). Beam codebook based beamforming protocol for multi-Gbps millimeter-wave WPAN systems. IEEE Journal of Selected Areas in Communications, 27(8), 1390–1399.CrossRef Wang, J., Lan, Z., Pyo, C., Baykas, T., Sum, C., Rahman, M., et al. (2009). Beam codebook based beamforming protocol for multi-Gbps millimeter-wave WPAN systems. IEEE Journal of Selected Areas in Communications, 27(8), 1390–1399.CrossRef
50.
Zurück zum Zitat Tsang, Y., Poon, A., & Addepalli, S. (2011). Coding the beams: Improving beamforming training in mmwave communication system. In Proceedings of IEEE global telecommunications conference (pp. 1–6). Houston, USA. Tsang, Y., Poon, A., & Addepalli, S. (2011). Coding the beams: Improving beamforming training in mmwave communication system. In Proceedings of IEEE global telecommunications conference (pp. 1–6). Houston, USA.
51.
Zurück zum Zitat Qiao, J., Shen, X., Mark, J. W., & He, Y. (2015). MAC-layer concurrent beamforming protocol for indoor millimeter-wave networks. IEEE Transactions on Vehicular Technology, 64(1), 327–338.CrossRef Qiao, J., Shen, X., Mark, J. W., & He, Y. (2015). MAC-layer concurrent beamforming protocol for indoor millimeter-wave networks. IEEE Transactions on Vehicular Technology, 64(1), 327–338.CrossRef
52.
Zurück zum Zitat Collonge, S., Zaharia, G., & Zein, G. E. (2004). Influence of human activity on wide-band characteristics of the 60 GHz indoor radio channel. IEEE Transactions on Wireless Communications, 3(6), 2369–2406.CrossRef Collonge, S., Zaharia, G., & Zein, G. E. (2004). Influence of human activity on wide-band characteristics of the 60 GHz indoor radio channel. IEEE Transactions on Wireless Communications, 3(6), 2369–2406.CrossRef
53.
Zurück zum Zitat “WirelessHD: WirelessHD specification overview,” 2009. “WirelessHD: WirelessHD specification overview,” 2009.
55.
Zurück zum Zitat Yong, S. K., Xia, P., & Valdes-Garcia, A. (2011). 60 GHz technology for Gbps WLAN and WPAN. Chichester: Wiley. Yong, S. K., Xia, P., & Valdes-Garcia, A. (2011). 60 GHz technology for Gbps WLAN and WPAN. Chichester: Wiley.
56.
Zurück zum Zitat Razavi, B. (1997). Design considerations for direct-conversion receivers. IEEE Transactions on Circuits and Systems II, 44(6), 428–435.CrossRef Razavi, B. (1997). Design considerations for direct-conversion receivers. IEEE Transactions on Circuits and Systems II, 44(6), 428–435.CrossRef
57.
Zurück zum Zitat Hong, W., Baek, K.-H., Lee, Y., Kim, Y., & Ko, S.-T. (2014). Study and prototyping of practically large-scale mmWave antenna systems for 5G cellular devices. IEEE Communications Magazine, 52(9), 63–69.CrossRef Hong, W., Baek, K.-H., Lee, Y., Kim, Y., & Ko, S.-T. (2014). Study and prototyping of practically large-scale mmWave antenna systems for 5G cellular devices. IEEE Communications Magazine, 52(9), 63–69.CrossRef
58.
Zurück zum Zitat Hu, S., Xiong, Y.-Z., Wang, L., Li, R., Shi, J., & Lim, T.-G. (2012). Compact high-gain mmWave antenna for TSV-based system-in-package application. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2(5), 841–846.CrossRef Hu, S., Xiong, Y.-Z., Wang, L., Li, R., Shi, J., & Lim, T.-G. (2012). Compact high-gain mmWave antenna for TSV-based system-in-package application. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2(5), 841–846.CrossRef
59.
Zurück zum Zitat Liao, S., Wu, P., Shum, K., & Xue, Q. (2015). Differentially fed planar aperture antenna with high gain and wide bandwidth for millimeter wave application. IEEE Transactions on Antennas and Propagation, 63(3), 966–977.MathSciNetCrossRef Liao, S., Wu, P., Shum, K., & Xue, Q. (2015). Differentially fed planar aperture antenna with high gain and wide bandwidth for millimeter wave application. IEEE Transactions on Antennas and Propagation, 63(3), 966–977.MathSciNetCrossRef
60.
Zurück zum Zitat Zwick, T., Liu, D., & Gaucher, B. P. (2006). Broadband planar superstrate antenna for integrated millimeterwave transceivers. IEEE Transactions on Antennas and Propagation, 54(10), 2790–2796.CrossRef Zwick, T., Liu, D., & Gaucher, B. P. (2006). Broadband planar superstrate antenna for integrated millimeterwave transceivers. IEEE Transactions on Antennas and Propagation, 54(10), 2790–2796.CrossRef
61.
Zurück zum Zitat Mudumbai, R., Singh, S., & Madhow, U. (2009). Medium access control for 60 GHz outdoor mesh networks with highly directional links. In Proceedings of the IEEE INFOCOM 2009 (Mini Conference) (pp. 2871–2875). Rio de Janeiro, Brazil. Mudumbai, R., Singh, S., & Madhow, U. (2009). Medium access control for 60 GHz outdoor mesh networks with highly directional links. In Proceedings of the IEEE INFOCOM 2009 (Mini Conference) (pp. 2871–2875). Rio de Janeiro, Brazil.
62.
Zurück zum Zitat Son, I. K., Mao, S., Gong, M. X., & Li, Y. (2012). On frame-based scheduling for directional mmWave WPANs. In Proceedings of the IEEE INFOCOM (pp. 2149–2157). Orlando, FL. Son, I. K., Mao, S., Gong, M. X., & Li, Y. (2012). On frame-based scheduling for directional mmWave WPANs. In Proceedings of the IEEE INFOCOM (pp. 2149–2157). Orlando, FL.
63.
Zurück zum Zitat Qiao, J., Cai, L. X., Shen, X., & Mark, J. (2012). STDMA-based scheduling algorithm for concurrent transmissions in directional millimeter wave networks. In Proceedings of the IEEE ICC (pp. 5221–5225). Ottawa, Canada. Qiao, J., Cai, L. X., Shen, X., & Mark, J. (2012). STDMA-based scheduling algorithm for concurrent transmissions in directional millimeter wave networks. In Proceedings of the IEEE ICC (pp. 5221–5225). Ottawa, Canada.
64.
Zurück zum Zitat Sum, C., Lan, Z., Funada, R., Wang, J., Baykas, T., Rahman, M. A., et al. (2009). Virtual time-slot allocation scheme for throughput enhancement in a millimeter-wave multi-Gbps WPAN system. IEEE Journal on Selected Areas in Communications, 27(8), 1379–1389.CrossRef Sum, C., Lan, Z., Funada, R., Wang, J., Baykas, T., Rahman, M. A., et al. (2009). Virtual time-slot allocation scheme for throughput enhancement in a millimeter-wave multi-Gbps WPAN system. IEEE Journal on Selected Areas in Communications, 27(8), 1379–1389.CrossRef
65.
Zurück zum Zitat Kang, H., Ko, G., Kim, I., Oh, J., Song, M., & Choi, J. (2013). Overlapping BSS interference mitigation among WLAN systems. In Proceedings of the IEEE 2013 international conference ICT convergence (pp. 913–917). Jeju, South Korea. Kang, H., Ko, G., Kim, I., Oh, J., Song, M., & Choi, J. (2013). Overlapping BSS interference mitigation among WLAN systems. In Proceedings of the IEEE 2013 international conference ICT convergence (pp. 913–917). Jeju, South Korea.
66.
Zurück zum Zitat Chen, Q., Peng, X., Yang, J., & Chin, F. (2012). Spatial reuse strategy in mmWave WPANs with directional antennas. In Proceedings of the 2012 IEEE GLOBECOM (pp. 5392–5397). Anaheim, CA. Chen, Q., Peng, X., Yang, J., & Chin, F. (2012). Spatial reuse strategy in mmWave WPANs with directional antennas. In Proceedings of the 2012 IEEE GLOBECOM (pp. 5392–5397). Anaheim, CA.
67.
Zurück zum Zitat An, X., & Hekmat, R. (2008). Directional MAC protocol for millimeter wave based wireless personal area networks. In Proceedings of the IEEE VTC-Spring’08 (pp. 1636–1640). Singapore. An, X., & Hekmat, R. (2008). Directional MAC protocol for millimeter wave based wireless personal area networks. In Proceedings of the IEEE VTC-Spring’08 (pp. 1636–1640). Singapore.
68.
Zurück zum Zitat Pyo, C. W., Kojima, F., Wang, J., Harada, H., & Kato, S. (2009). MAC enhancement for high speed communications in the 802.15.3c mm Wave WPAN. Springer Wireless Personal Communications, 51(4), 825–841.CrossRef Pyo, C. W., Kojima, F., Wang, J., Harada, H., & Kato, S. (2009). MAC enhancement for high speed communications in the 802.15.3c mm Wave WPAN. Springer Wireless Personal Communications, 51(4), 825–841.CrossRef
69.
Zurück zum Zitat Cai, L. X., Cai, L., Shen, X., & Mark, J. W. (2010). REX: A randomized EXclusive region based scheduling scheme for mmWave WPANs with directional antenna. IEEE Transactions on Wireless Communications, 9(1), 113–121.CrossRef Cai, L. X., Cai, L., Shen, X., & Mark, J. W. (2010). REX: A randomized EXclusive region based scheduling scheme for mmWave WPANs with directional antenna. IEEE Transactions on Wireless Communications, 9(1), 113–121.CrossRef
70.
Zurück zum Zitat Sum, C.-S., Lan, Z., Rahman, M. A. et al. (2009). A multi-Gbps millimeter-wave WPAN system based on STDMA with heuristic scheduling. In Proceedings of the IEEE GLOBECOM (pp. 1–6). Honolulu, HI. Sum, C.-S., Lan, Z., Rahman, M. A. et al. (2009). A multi-Gbps millimeter-wave WPAN system based on STDMA with heuristic scheduling. In Proceedings of the IEEE GLOBECOM (pp. 1–6). Honolulu, HI.
71.
Zurück zum Zitat Qiao, J., Cai, L. X., Shen, X., et al. (2011). Enabling multi-hop concurrent transmissions in 60 GHz wireless personal area networks. IEEE Transactions on Wireless Communications, 10(11), 3824–3833.CrossRef Qiao, J., Cai, L. X., Shen, X., et al. (2011). Enabling multi-hop concurrent transmissions in 60 GHz wireless personal area networks. IEEE Transactions on Wireless Communications, 10(11), 3824–3833.CrossRef
72.
Zurück zum Zitat Shihab, E., Cai, L., & Pan, J. (2009). A distributed asynchronous directional-to-directional MAC protocol for wireless ad hoc networks. IEEE Transactions on Vehicular Technology, 58(9), 5124–5134.CrossRef Shihab, E., Cai, L., & Pan, J. (2009). A distributed asynchronous directional-to-directional MAC protocol for wireless ad hoc networks. IEEE Transactions on Vehicular Technology, 58(9), 5124–5134.CrossRef
73.
Zurück zum Zitat Gong, M. X., Stacey, R. J., Akhmetov, D., & Mao, S. (2010). A directional CSMA/CA protocol for mmWave wireless PANs. In Proceedings of the IEEE WCNC’10 (pp. 1–6). Sydney, NSW. Gong, M. X., Stacey, R. J., Akhmetov, D., & Mao, S. (2010). A directional CSMA/CA protocol for mmWave wireless PANs. In Proceedings of the IEEE WCNC’10 (pp. 1–6). Sydney, NSW.
74.
Zurück zum Zitat Singh, S., Mudumbai, R., & Madhow, U. (2010). Distributed coordination with deaf neighbors: Efficient medium access for 60 GHz mesh networks. In Proceedings of the IEEE INFOCOM (pp. 1–9). San Diego, CA. Singh, S., Mudumbai, R., & Madhow, U. (2010). Distributed coordination with deaf neighbors: Efficient medium access for 60 GHz mesh networks. In Proceedings of the IEEE INFOCOM (pp. 1–9). San Diego, CA.
75.
Zurück zum Zitat Chen, Q., Tang, J., Wong, D., Peng, X., & Zhang, Y. (2013). Directional cooperative MAC protocol design and performance analysis for IEEE 802.11ad WLANs. IEEE Transactions on Vehicular Technology, 62(6), 2667–2677.CrossRef Chen, Q., Tang, J., Wong, D., Peng, X., & Zhang, Y. (2013). Directional cooperative MAC protocol design and performance analysis for IEEE 802.11ad WLANs. IEEE Transactions on Vehicular Technology, 62(6), 2667–2677.CrossRef
76.
Zurück zum Zitat Park, H., Park, S., Song, T., & Pack, S. (2013). An incremental multicast grouping scheme for mmWave networks with directional antennas. IEEE Communications Letters, 17(3), 616–619.CrossRef Park, H., Park, S., Song, T., & Pack, S. (2013). An incremental multicast grouping scheme for mmWave networks with directional antennas. IEEE Communications Letters, 17(3), 616–619.CrossRef
77.
Zurück zum Zitat Scott-Hayward, S., & Garcia-Palacios, E. (2015). Multimedia resource allocation in mmWave 5G networks. IEEE Communications Magazine, 53(1), 240–247.CrossRef Scott-Hayward, S., & Garcia-Palacios, E. (2015). Multimedia resource allocation in mmWave 5G networks. IEEE Communications Magazine, 53(1), 240–247.CrossRef
78.
Zurück zum Zitat Sato, K., & Manabe, T. (1998). Estimation of propagation-path visibility for indoor wireless LAN systems under shadowing condition by human bodies. In 48th IEEE vehicular technology conference (pp. 2109–2113). Sato, K., & Manabe, T. (1998). Estimation of propagation-path visibility for indoor wireless LAN systems under shadowing condition by human bodies. In 48th IEEE vehicular technology conference (pp. 2109–2113).
79.
Zurück zum Zitat Dong, K., Liao, X., & Zhu, S. (2012). Link blockage analysis for indoor 60 GHz radio systems. Electronics Letters, 48(23), 1506–1508.CrossRef Dong, K., Liao, X., & Zhu, S. (2012). Link blockage analysis for indoor 60 GHz radio systems. Electronics Letters, 48(23), 1506–1508.CrossRef
80.
Zurück zum Zitat Genc, Z., et al. (2010). Robust 60 GHz indoor connectivity: Is it possible with reflections? In 2010 IEEE 71st vehicular technology conference (pp. 1–5). Taipei, Taiwan. Genc, Z., et al. (2010). Robust 60 GHz indoor connectivity: Is it possible with reflections? In 2010 IEEE 71st vehicular technology conference (pp. 1–5). Taipei, Taiwan.
81.
Zurück zum Zitat Yiu, C., & Singh, S. (2009). Empirical capacity of mmWave WLANs. IEEE Journal on Selected Areas in Communications, 27(8), 1479–1487.CrossRef Yiu, C., & Singh, S. (2009). Empirical capacity of mmWave WLANs. IEEE Journal on Selected Areas in Communications, 27(8), 1479–1487.CrossRef
82.
Zurück zum Zitat An, X., et al. (2009). Beam switching support to resolve link-blockage problem in 60 GHz WPANs. In 2009 IEEE 20th international Symposium on personal, indoor and mobile radio communications (pp. 390–394). Tokyo, Japan. An, X., et al. (2009). Beam switching support to resolve link-blockage problem in 60 GHz WPANs. In 2009 IEEE 20th international Symposium on personal, indoor and mobile radio communications (pp. 390–394). Tokyo, Japan.
83.
Zurück zum Zitat Park, M., & Pan, H. K. (2012). A spatial diversity technique for IEEE 802.11ad WLAN in 60 GHz band. IEEE Communications Letters, 16(8), 1260–1262.CrossRef Park, M., & Pan, H. K. (2012). A spatial diversity technique for IEEE 802.11ad WLAN in 60 GHz band. IEEE Communications Letters, 16(8), 1260–1262.CrossRef
84.
Zurück zum Zitat Xiao, Z. (2013). Suboptimal spatial diversity scheme for 60 GHz millimeter-wave WLAN. IEEE Communications Letters, 17(9), 1790–1793.CrossRef Xiao, Z. (2013). Suboptimal spatial diversity scheme for 60 GHz millimeter-wave WLAN. IEEE Communications Letters, 17(9), 1790–1793.CrossRef
85.
Zurück zum Zitat Singh, S., Ziliotto, F., Madhow, U., Belding, E. M., & Rodwell, M. J. W. (2007). Millimeter wave WPAN: Cross-layer modeling and multihop architecture. In IEEE INFOCOM (pp. 2336–2240). Anchorage, US. Singh, S., Ziliotto, F., Madhow, U., Belding, E. M., & Rodwell, M. J. W. (2007). Millimeter wave WPAN: Cross-layer modeling and multihop architecture. In IEEE INFOCOM (pp. 2336–2240). Anchorage, US.
86.
Zurück zum Zitat Lan, Z., et al. (2010). Directional relay with spatial time slot scheduling for mmWave WPAN systems. In Proceedings of the VTC-Spring 2010 (pp. 1–5). Taipei, Taiwan. Lan, Z., et al. (2010). Directional relay with spatial time slot scheduling for mmWave WPAN systems. In Proceedings of the VTC-Spring 2010 (pp. 1–5). Taipei, Taiwan.
87.
Zurück zum Zitat Lan, Z., Sum, C., Wang, J., Baykas, T., Kojima, F., Nakase, H., et al. (2009). Relay with deflection routing for effective throughput improvement in Gbps millimeter-wave WPAN systems. IEEE Journal on Selected Areas in Communications, 27(8), 1453–1465.CrossRef Lan, Z., Sum, C., Wang, J., Baykas, T., Kojima, F., Nakase, H., et al. (2009). Relay with deflection routing for effective throughput improvement in Gbps millimeter-wave WPAN systems. IEEE Journal on Selected Areas in Communications, 27(8), 1453–1465.CrossRef
88.
Zurück zum Zitat Zhang, X., et al. (2012). Improving network throughput in 60 GHz WLANs via multi-AP diversity. In 2012 IEEE international conference on communications (pp. 4803–4807). Ottawa, Canada. Zhang, X., et al. (2012). Improving network throughput in 60 GHz WLANs via multi-AP diversity. In 2012 IEEE international conference on communications (pp. 4803–4807). Ottawa, Canada.
89.
Zurück zum Zitat Niu, Y., Li, Y., Jin, D., Su, L., & Wu, D. (2015). Blockage robust and efficient scheduling for directional mmWave WPANs. IEEE Transactions on Vehicular Technology, 64(2), 728–742.CrossRef Niu, Y., Li, Y., Jin, D., Su, L., & Wu, D. (2015). Blockage robust and efficient scheduling for directional mmWave WPANs. IEEE Transactions on Vehicular Technology, 64(2), 728–742.CrossRef
90.
Zurück zum Zitat Wang, J., et al. (2010). Exploring multipath capacity for indoor 60 GHz radio networks. In 2010 IEEE international conference on communications (pp. 1–6). Cape Town, South Africa. Wang, J., et al. (2010). Exploring multipath capacity for indoor 60 GHz radio networks. In 2010 IEEE international conference on communications (pp. 1–6). Cape Town, South Africa.
91.
Zurück zum Zitat IEEE doc. 11-09-0334-08-00ad. (2010). Channel models for 60 GHz WLAN systems. IEEE doc. 11-09-0334-08-00ad. (2010). Channel models for 60 GHz WLAN systems.
92.
Zurück zum Zitat Lu, L., Zhang, X., Funada, R., Sum, C. S., & Harada, H. (2011). Selection of modulation and coding schemes of single carrier PHY for 802.11ad multi-gigabit mmWave WLAN systems. In 2011 IEEE Symposium on computers and communications (ISCC) (pp. 348–352). Lu, L., Zhang, X., Funada, R., Sum, C. S., & Harada, H. (2011). Selection of modulation and coding schemes of single carrier PHY for 802.11ad multi-gigabit mmWave WLAN systems. In 2011 IEEE Symposium on computers and communications (ISCC) (pp. 348–352).
93.
Zurück zum Zitat Gudipati, A., Perry, D., Li, L. E., & Katti, S. (2013). SoftRAN: Software defined radio access network. In Proceedings of the ACM HotSDN 2013 (pp. 25–30). Hong Kong, China. Gudipati, A., Perry, D., Li, L. E., & Katti, S. (2013). SoftRAN: Software defined radio access network. In Proceedings of the ACM HotSDN 2013 (pp. 25–30). Hong Kong, China.
94.
Zurück zum Zitat Bejerano, Y., & Bhatia, R. (2006). Mifi: A framework for fairness and QoS assurance in current IEEE 802.11 networks with multiple access points. IEEE Transactions on Networking, 14(4), 849–862.CrossRef Bejerano, Y., & Bhatia, R. (2006). Mifi: A framework for fairness and QoS assurance in current IEEE 802.11 networks with multiple access points. IEEE Transactions on Networking, 14(4), 849–862.CrossRef
95.
Zurück zum Zitat Arbaugh, W., Mishra, A., & Shin, M. (2003). An empirical analysis of the IEEE 802.11 MAC layer handoff process. ACM SIGCOMM Computer Communication Review, 33(2), 93–102.CrossRef Arbaugh, W., Mishra, A., & Shin, M. (2003). An empirical analysis of the IEEE 802.11 MAC layer handoff process. ACM SIGCOMM Computer Communication Review, 33(2), 93–102.CrossRef
96.
Zurück zum Zitat Bejerano, Y., Han, S., & Li, L. (2007). Fairness and load balancing in wireless lans using association control. IEEE Transactions on Networking, 15(3), 560–573.CrossRef Bejerano, Y., Han, S., & Li, L. (2007). Fairness and load balancing in wireless lans using association control. IEEE Transactions on Networking, 15(3), 560–573.CrossRef
97.
Zurück zum Zitat Athanasiou, G., Weeraddana, C., Fischione, C., & Tassiulas, L. (2015). Optimizing client association in 60 GHz wireless access networks. IEEE/ACM Transactions on Networking (to appear). Athanasiou, G., Weeraddana, C., Fischione, C., & Tassiulas, L. (2015). Optimizing client association in 60 GHz wireless access networks. IEEE/ACM Transactions on Networking (to appear).
98.
Zurück zum Zitat Van Quang, B., Prasad, R. V., Niemieeger, I., & Huong, N. T. V. (2010). A study on handoff issues in radio over fiber network at 60 GHz. In 2010 Third international conference on communications and electronics (ICCE) (pp. 50–54). Van Quang, B., Prasad, R. V., Niemieeger, I., & Huong, N. T. V. (2010). A study on handoff issues in radio over fiber network at 60 GHz. In 2010 Third international conference on communications and electronics (ICCE) (pp. 50–54).
99.
Zurück zum Zitat Tsagkaris, K., Vyrsokinos, K., Pleros, N., & Tselikas, N. D. (2009). Seamless communication in picocellurar 60 GHz radio-over-fiber networks. In IEEE/LEOS summer topical meeting (pp. 59–60). Tsagkaris, K., Vyrsokinos, K., Pleros, N., & Tselikas, N. D. (2009). Seamless communication in picocellurar 60 GHz radio-over-fiber networks. In IEEE/LEOS summer topical meeting (pp. 59–60).
100.
Zurück zum Zitat Pleros, N., Tsagkaris, K., & Tselikas, N. D. (2008). A moving extended cell concept for seamless communication in 60 GHz radio-over-fiber networks. IEEE Communications Letters, 12(11), 852–854.CrossRef Pleros, N., Tsagkaris, K., & Tselikas, N. D. (2008). A moving extended cell concept for seamless communication in 60 GHz radio-over-fiber networks. IEEE Communications Letters, 12(11), 852–854.CrossRef
101.
Zurück zum Zitat Ghosh, A., Thomas, T. A., Cudak, M. C., Ratasuk, R., Moorut, P., Vook, F. W., et al. (2014). Millimeter-wave enhanced local area systems: A high-data-rate approach for future wireless networks. IEEE Journal on Selected Areas in Communications, 32(6), 1152–1163.CrossRef Ghosh, A., Thomas, T. A., Cudak, M. C., Ratasuk, R., Moorut, P., Vook, F. W., et al. (2014). Millimeter-wave enhanced local area systems: A high-data-rate approach for future wireless networks. IEEE Journal on Selected Areas in Communications, 32(6), 1152–1163.CrossRef
102.
Zurück zum Zitat Rappaport, T. S., et al. (2013). Special session on mmWave communications. In Proceedings of the ICC. Budapest, Hungary. Rappaport, T. S., et al. (2013). Special session on mmWave communications. In Proceedings of the ICC. Budapest, Hungary.
103.
Zurück zum Zitat Baldemair, R., Irnich, T., Balachandran, K., Dahlman, E., Mildh, G., Seln, Y., et al. (2015). Ultra-dense networks in millimeter-wave frequencies. IEEE Communications Magazine, 53(1), 202–208.CrossRef Baldemair, R., Irnich, T., Balachandran, K., Dahlman, E., Mildh, G., Seln, Y., et al. (2015). Ultra-dense networks in millimeter-wave frequencies. IEEE Communications Magazine, 53(1), 202–208.CrossRef
104.
Zurück zum Zitat Singh, H., Oh, J., Kweon, C., Qin, X., Shao, H., & Ngo, C. (2008). A 60 GHz wireless network for enabling uncompressed video communication. IEEE Communications Magazine, 46(12), 71–78.CrossRef Singh, H., Oh, J., Kweon, C., Qin, X., Shao, H., & Ngo, C. (2008). A 60 GHz wireless network for enabling uncompressed video communication. IEEE Communications Magazine, 46(12), 71–78.CrossRef
105.
Zurück zum Zitat Wu, D., Wang, J., Cai, Y., & Guizani, M. (2015). Millimeter-wave multimedia communications: Challenges, methodology, and applications. IEEE Communications Magazine, 53(1), 232–238.CrossRef Wu, D., Wang, J., Cai, Y., & Guizani, M. (2015). Millimeter-wave multimedia communications: Challenges, methodology, and applications. IEEE Communications Magazine, 53(1), 232–238.CrossRef
106.
Zurück zum Zitat Rappaport, T., et al. (2013). Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications. IEEE Transactions on Antennas and Propagation, 61(4), 1850–1859.MathSciNetCrossRef Rappaport, T., et al. (2013). Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications. IEEE Transactions on Antennas and Propagation, 61(4), 1850–1859.MathSciNetCrossRef
107.
Zurück zum Zitat Bai, T., Alkhateeb, A., & Heath, R. (2014). Coverage and capacity of millimeter-wave cellular networks. IEEE Communications Magazine, 52(9), 70–77.CrossRef Bai, T., Alkhateeb, A., & Heath, R. (2014). Coverage and capacity of millimeter-wave cellular networks. IEEE Communications Magazine, 52(9), 70–77.CrossRef
108.
Zurück zum Zitat Bai, T., & Heath, R. (2015). Coverage and rate analysis for millimeter wave cellular networks. IEEE Transactions on Wireless Communications, 14(2), 1100–1114.CrossRef Bai, T., & Heath, R. (2015). Coverage and rate analysis for millimeter wave cellular networks. IEEE Transactions on Wireless Communications, 14(2), 1100–1114.CrossRef
109.
Zurück zum Zitat Sulyman, A. I., Nassar, A. T., Samimi, M. K., Maccartney, G. R, Jr., Rappaport, T. S., & Alsanie, A. (2014). Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands. IEEE Communications Magazine, 52(9), 78–86.CrossRef Sulyman, A. I., Nassar, A. T., Samimi, M. K., Maccartney, G. R, Jr., Rappaport, T. S., & Alsanie, A. (2014). Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands. IEEE Communications Magazine, 52(9), 78–86.CrossRef
110.
Zurück zum Zitat Taori, R., & Sridharan, A. (2015). Point-to-multipoint in-band mmwave backhaul for 5G networks. IEEE Communications Magazine, 53(1), 195–201.CrossRef Taori, R., & Sridharan, A. (2015). Point-to-multipoint in-band mmwave backhaul for 5G networks. IEEE Communications Magazine, 53(1), 195–201.CrossRef
111.
Zurück zum Zitat Bernardos, C. J., et al. (2013). Challenges of designing jointly the backhaul and radio access network in a cloud-based mobile network. In 2013 Future network and mobile summit (pp. 1–10). Lisboa. Bernardos, C. J., et al. (2013). Challenges of designing jointly the backhaul and radio access network in a cloud-based mobile network. In 2013 Future network and mobile summit (pp. 1–10). Lisboa.
112.
Zurück zum Zitat Niu, Y., Gao, C., Li, Y., Su, L., Jin, D., & Vasilakos, A. V. (2015). Exploiting device-to-device transmissions in joint scheduling of access and backhaul for small cells in 60 GHz band. IEEE Journal on Selected Areas in Communications (to appear). Niu, Y., Gao, C., Li, Y., Su, L., Jin, D., & Vasilakos, A. V. (2015). Exploiting device-to-device transmissions in joint scheduling of access and backhaul for small cells in 60 GHz band. IEEE Journal on Selected Areas in Communications (to appear).
113.
Zurück zum Zitat Sun, S., Rappaport, T. S., Heath, R. W., Nix, A., & Rangan, S. (2014). Mimo for millimeter-wave wireless communications: Beamforming, spatial multiplexing, or both? IEEE Communications Magazine, 52(12), 110–121.CrossRef Sun, S., Rappaport, T. S., Heath, R. W., Nix, A., & Rangan, S. (2014). Mimo for millimeter-wave wireless communications: Beamforming, spatial multiplexing, or both? IEEE Communications Magazine, 52(12), 110–121.CrossRef
114.
Zurück zum Zitat Alkhateeb, A., Mo, J., Gonzalez-Prelcic, N., & Heath, R. W. (2014). MIMO precoding and combining solutions for millimeter-wave systems. IEEE Communications Magazine, 52(12), 122–131.CrossRef Alkhateeb, A., Mo, J., Gonzalez-Prelcic, N., & Heath, R. W. (2014). MIMO precoding and combining solutions for millimeter-wave systems. IEEE Communications Magazine, 52(12), 122–131.CrossRef
115.
Zurück zum Zitat Liu, P., & Springer, A. (2015). Space shift keying (SSK) for LOS communication at mmWave frequencies. IEEE Wireless Communications Letters (to appear). Liu, P., & Springer, A. (2015). Space shift keying (SSK) for LOS communication at mmWave frequencies. IEEE Wireless Communications Letters (to appear).
116.
Zurück zum Zitat Wei, L., Hu, R., Qian, Y., & Wu, G. (2014). Key elements to enable millimeter wave communications for 5G wireless systems. IEEE Wireless Communications, 21(6), 136–143.CrossRef Wei, L., Hu, R., Qian, Y., & Wu, G. (2014). Key elements to enable millimeter wave communications for 5G wireless systems. IEEE Wireless Communications, 21(6), 136–143.CrossRef
117.
Zurück zum Zitat Roh, W., Seol, J., Park, J., Lee, B., Lee, J., Kim, Y., et al. (2014). Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Communications Magazine, 52(2), 106–113.CrossRef Roh, W., Seol, J., Park, J., Lee, B., Lee, J., Kim, Y., et al. (2014). Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Communications Magazine, 52(2), 106–113.CrossRef
118.
Zurück zum Zitat El Ayach, O., Rajagopal, S., Abu-Surra, S., Pi, Zhouyue, & Heath, R. W. (2014). Spatially sparse precoding in millimeter wave MIMO systems. IEEE Transactions on Wireless Communications, 13(3), 1499–1513.CrossRef El Ayach, O., Rajagopal, S., Abu-Surra, S., Pi, Zhouyue, & Heath, R. W. (2014). Spatially sparse precoding in millimeter wave MIMO systems. IEEE Transactions on Wireless Communications, 13(3), 1499–1513.CrossRef
119.
Zurück zum Zitat Alkhateeb, A., El Ayach, O., Leus, G., & Heath, R. W. (2014). Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE Journal of Selected Topics in Signal Processing, 8(5), 831–846.CrossRef Alkhateeb, A., El Ayach, O., Leus, G., & Heath, R. W. (2014). Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE Journal of Selected Topics in Signal Processing, 8(5), 831–846.CrossRef
120.
Zurück zum Zitat Singh, J., & Ramakrishna, S. (2015). On the feasibility of beamforming in millimeter wave communication systems with multiple antenna arrays. IEEE Transactions on Wireless Communications (to appear). Singh, J., & Ramakrishna, S. (2015). On the feasibility of beamforming in millimeter wave communication systems with multiple antenna arrays. IEEE Transactions on Wireless Communications (to appear).
121.
Zurück zum Zitat Han, S., Chih-Lin, I., Xu, Z., & Rowell, C. (2015). Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G. IEEE Communications Magazine, 53(1), 186–194.CrossRef Han, S., Chih-Lin, I., Xu, Z., & Rowell, C. (2015). Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G. IEEE Communications Magazine, 53(1), 186–194.CrossRef
122.
Zurück zum Zitat Jain, M., Choi, J., Kim, T. T., Bharadia, D., Seth, S., Srinivasan, K., Levis, P., Katti, S., & Sinha, P. (2011). Practical, real-time, full duplex wireless. In Proceedings of ACM MobiCom11 (pp. 300–312). Jain, M., Choi, J., Kim, T. T., Bharadia, D., Seth, S., Srinivasan, K., Levis, P., Katti, S., & Sinha, P. (2011). Practical, real-time, full duplex wireless. In Proceedings of ACM MobiCom11 (pp. 300–312).
123.
Zurück zum Zitat Radunovic, B., Gunawardena, D., Key, P., Proutiere, A., Singh, N., Balan, V., & Dejean, G. (2010). Rethinking indoor wireless mesh design: Low power, low frequency, full-duplex. In 2010 Fifth IEEE workshop on wireless mesh networks (WIMESH 2010) (pp. 1–6). Radunovic, B., Gunawardena, D., Key, P., Proutiere, A., Singh, N., Balan, V., & Dejean, G. (2010). Rethinking indoor wireless mesh design: Low power, low frequency, full-duplex. In 2010 Fifth IEEE workshop on wireless mesh networks (WIMESH 2010) (pp. 1–6).
124.
Zurück zum Zitat Sen, S., Choudhury, R. R., & Nelakuditi, S. (2010). CSMA/CN: Carrier sense multiple access with collision notification. In Proceedings of the sixteenth annual international conference on mobile computing and networking (pp. 25–36). New York, USA. Sen, S., Choudhury, R. R., & Nelakuditi, S. (2010). CSMA/CN: Carrier sense multiple access with collision notification. In Proceedings of the sixteenth annual international conference on mobile computing and networking (pp. 25–36). New York, USA.
125.
Zurück zum Zitat Tamaki, K., Ari Raptino H., Sugiyama, Y., Bandaiy, M., Saruwatari, S., & Watanabe, T. (2013). Full duplex media access control for wireless multi-hop networks. In IEEE 77th vehicular technology conference (VTC Spring) (pp. 1–5). Tamaki, K., Ari Raptino H., Sugiyama, Y., Bandaiy, M., Saruwatari, S., & Watanabe, T. (2013). Full duplex media access control for wireless multi-hop networks. In IEEE 77th vehicular technology conference (VTC Spring) (pp. 1–5).
126.
Zurück zum Zitat Xie, X., & Zhang, X. (2014). Does full-duplex double the capacity of wireless networks? In Infocom14 (pp. 1–9). Xie, X., & Zhang, X. (2014). Does full-duplex double the capacity of wireless networks? In Infocom14 (pp. 1–9).
127.
Zurück zum Zitat Miura, K., & Bandai, M. (2012). Node architecture and MAC protocol for full duplex wireless and directional antennas. In IEEE 23rd international Symposium on personal, indoor and mobile radio communications (PIMRC) (pp. 369–374). Miura, K., & Bandai, M. (2012). Node architecture and MAC protocol for full duplex wireless and directional antennas. In IEEE 23rd international Symposium on personal, indoor and mobile radio communications (PIMRC) (pp. 369–374).
128.
Zurück zum Zitat Kim, H., & Feamster, N. (2013). Improving network management with software defined networking. IEEE Communications Magazine, 51(2), 114–119.CrossRef Kim, H., & Feamster, N. (2013). Improving network management with software defined networking. IEEE Communications Magazine, 51(2), 114–119.CrossRef
129.
Zurück zum Zitat McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., et al. (2008). Openflow: Enabling innovation in campus networks. ACM SIGCOMM Computer Communication Review, 38(2), 69–74.CrossRef McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., et al. (2008). Openflow: Enabling innovation in campus networks. ACM SIGCOMM Computer Communication Review, 38(2), 69–74.CrossRef
130.
Zurück zum Zitat Ning, J., Kim, T.-S., Krishnamurthy, S. V., & Cordeiro, C. (2009). Directional neighbor discovery in 60 GHz indoor wireless networks. In Proceedings of the ACM MSWiM ’09 (pp. 365–373). Tenerife, Spain. Ning, J., Kim, T.-S., Krishnamurthy, S. V., & Cordeiro, C. (2009). Directional neighbor discovery in 60 GHz indoor wireless networks. In Proceedings of the ACM MSWiM ’09 (pp. 365–373). Tenerife, Spain.
131.
Zurück zum Zitat Kim, M., Kim, Y. S., & Lee, W. (2013). Analysis of directional neighbour discovery process in millimetre wave wireless personal area networks. IET Networks, 2(2), 92–101.CrossRef Kim, M., Kim, Y. S., & Lee, W. (2013). Analysis of directional neighbour discovery process in millimetre wave wireless personal area networks. IET Networks, 2(2), 92–101.CrossRef
132.
Zurück zum Zitat Park, H., Kim, Y., Song, T., & Pack, S. (2015). Multi-band directional neighbor discovery in self-organized mmWave ad-hoc networks. IEEE Transactions on Vehicular Technology, 64(3), 1143–1155.CrossRef Park, H., Kim, Y., Song, T., & Pack, S. (2015). Multi-band directional neighbor discovery in self-organized mmWave ad-hoc networks. IEEE Transactions on Vehicular Technology, 64(3), 1143–1155.CrossRef
133.
Zurück zum Zitat Zheng, K., Zhao, L., Mei, J., Dohler, M., Xiang, W., & Peng, Y. (2015). 10 Gb/s hetsnets with millimeter-wave communications: Access and networking-challenges and protocols. IEEE Communications Magazine, 53(1), 222–231.CrossRef Zheng, K., Zhao, L., Mei, J., Dohler, M., Xiang, W., & Peng, Y. (2015). 10 Gb/s hetsnets with millimeter-wave communications: Access and networking-challenges and protocols. IEEE Communications Magazine, 53(1), 222–231.CrossRef
134.
Zurück zum Zitat Zhao, H., Mayzus, R., Sun, S., Samimi, M., Schulz, J. K., Azar, Y., Wang, K., Wong, G. N., Gutierrez, F., & Rappaport, T. S. (2013). 28 GHz millimeter wave cellular communication measurements for reflection and penetration loss in and around buildings in New York City. In Proceedings of the IEEE international conference communications (pp. 5163–5167). Zhao, H., Mayzus, R., Sun, S., Samimi, M., Schulz, J. K., Azar, Y., Wang, K., Wong, G. N., Gutierrez, F., & Rappaport, T. S. (2013). 28 GHz millimeter wave cellular communication measurements for reflection and penetration loss in and around buildings in New York City. In Proceedings of the IEEE international conference communications (pp. 5163–5167).
135.
Zurück zum Zitat Damnjanovic, A., Montojo, J., Wei, Y., Ji, T., Luo, T., Vajapeyam, M., et al. (2011). A survey on 3GPP heterogeneous networks. IEEE Wireless Communications, 18(3), 10–21.CrossRef Damnjanovic, A., Montojo, J., Wei, Y., Ji, T., Luo, T., Vajapeyam, M., et al. (2011). A survey on 3GPP heterogeneous networks. IEEE Wireless Communications, 18(3), 10–21.CrossRef
137.
Zurück zum Zitat Andrews, J. G., Claussen, H., Dohler, M., Rangan, S., & Reed, M. C. (2012). Femtocells: Past, present, and future. IEEE Journal on Selected Areas in Communications, 30(3), 497–508.CrossRef Andrews, J. G., Claussen, H., Dohler, M., Rangan, S., & Reed, M. C. (2012). Femtocells: Past, present, and future. IEEE Journal on Selected Areas in Communications, 30(3), 497–508.CrossRef
138.
Zurück zum Zitat Chandrasekhar, V., Andrews, J. G., & Gatherer, A. (2009). Femtocell networks: A survey. IEEE Communications Magazine, 46(9), 59–67.CrossRef Chandrasekhar, V., Andrews, J. G., & Gatherer, A. (2009). Femtocell networks: A survey. IEEE Communications Magazine, 46(9), 59–67.CrossRef
139.
Zurück zum Zitat Mehrpouyan, H., Matthaiou, M., Wang, R., Karagiannidis, G. K., & Hua, Y. (2015). Hybrid millimeter-wave systems: A novel paradigm for HetNets. IEEE Communications Magazine, 53(1), 216–221.CrossRef Mehrpouyan, H., Matthaiou, M., Wang, R., Karagiannidis, G. K., & Hua, Y. (2015). Hybrid millimeter-wave systems: A novel paradigm for HetNets. IEEE Communications Magazine, 53(1), 216–221.CrossRef
140.
Zurück zum Zitat Lee, K., et al. (2010). Mobile data offloading: How much can WiFi deliver? In Co-NEXT ’10 proceedings of the 6th international conference. Lee, K., et al. (2010). Mobile data offloading: How much can WiFi deliver? In Co-NEXT ’10 proceedings of the 6th international conference.
141.
Zurück zum Zitat Qiao, J., Shen, X. S., Mark, J. W., Shen, Q., He, Y., & Lei, L. (2015). Enabling device-to-device communications in millimeter-wave 5G cellular networks. IEEE Communications Magazine, 53(1), 209–215.CrossRef Qiao, J., Shen, X. S., Mark, J. W., Shen, Q., He, Y., & Lei, L. (2015). Enabling device-to-device communications in millimeter-wave 5G cellular networks. IEEE Communications Magazine, 53(1), 209–215.CrossRef
142.
Zurück zum Zitat Pi, Z., & Khan, F. (2011). An introduction to millimeter-wave mobile broadband systems. IEEE Communications Magazine, 49(6), 101–107.CrossRef Pi, Z., & Khan, F. (2011). An introduction to millimeter-wave mobile broadband systems. IEEE Communications Magazine, 49(6), 101–107.CrossRef
143.
Zurück zum Zitat Hu, R. Q., & Qian, Y. (2013). Heterogeneous cellular networks. London: Wiley.CrossRef Hu, R. Q., & Qian, Y. (2013). Heterogeneous cellular networks. London: Wiley.CrossRef
144.
Zurück zum Zitat Bansal, M., Mehlman, J., Katti, S., & Levis, P. (2012). Openradio: A programmable wireless dataplane. In Proceedings of the first workshop on hot topics in software defined networks (pp. 109–114). Bansal, M., Mehlman, J., Katti, S., & Levis, P. (2012). Openradio: A programmable wireless dataplane. In Proceedings of the first workshop on hot topics in software defined networks (pp. 109–114).
Metadaten
Titel
A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges
verfasst von
Yong Niu
Yong Li
Depeng Jin
Li Su
Athanasios V. Vasilakos
Publikationsdatum
01.11.2015
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 8/2015
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-015-0942-z

Weitere Artikel der Ausgabe 8/2015

Wireless Networks 8/2015 Zur Ausgabe

Neuer Inhalt