Skip to main content
Erschienen in: Wireless Networks 4/2020

18.03.2019

A survey of mmWave user association mechanisms and spectrum sharing approaches: an overview, open issues and challenges, future research trends

verfasst von: Mothana L. Attiah, A. A. M. Isa, Zahriladha Zakaria, M. K. Abdulhameed, Mowafak K. Mohsen, Ihab Ali

Erschienen in: Wireless Networks | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fifth generation (5G) cellular networks promise to support multi-radio access technologies (multi-RATs) with low and high frequencies aiming at delivering good coverage, several gigabits data rate, and ultra-reliable services. In this context, user-association and resource allocation appear to be a huge challenge due to the variety of specifications and varied propagation environments. In this treatise, the focus is on the technical and administrative difficulties of the adoption of user association (UA) mechanism and spectrum sharing approach (SSA) in millimeter wave (mmWave) systems, for example, the technical design considerations and their underlying options, as well as their impact on users and network performance. In addition, details on the importance of the rules and regulations of SSA are presented. This study also identified a few possible design solutions and potential promising technologies in both UA and SSA. In the context of UA, several mechanisms are identified, such as backhaul-, caching-, and hybrid multi-criteria-aware UA to achieve seamless connectivity and to enhance the network utility. In the context of SSA, this study pinpoints varied subjects that need to be explored, such as joint efficient rules and regulations enactment, assessment of fairness and independence in multi-independent mobile network operators (multi-IMNOs) that support SSA, as well as the implementation of hybrid-SSA via Virtualized Cloud Radio Access Network. Finally, attention is drawn to several key conclusions to enable readers and interested researchers to learn about the most controversial points of mmWave 5G cellular networks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Majed, M. B., Rahman, T. A., & Aziz, O. A. (2018). Propagation path loss modeling and outdoor coverage measurements review in millimeter wave bands for 5G cellular communications. International Journal of Electrical and Computer Engineering (IJECE),8(4), 2254–2260.CrossRef Majed, M. B., Rahman, T. A., & Aziz, O. A. (2018). Propagation path loss modeling and outdoor coverage measurements review in millimeter wave bands for 5G cellular communications. International Journal of Electrical and Computer Engineering (IJECE),8(4), 2254–2260.CrossRef
2.
Zurück zum Zitat Demestichas, P., Georgakopoulos, A., Tsagkaris, K., & Kotrotsos, S. (2015). Intelligent 5G networks: Managing 5G wireless/mobile broadband. IEEE Vehicular Technology Magazine,10(3), 41–50.CrossRef Demestichas, P., Georgakopoulos, A., Tsagkaris, K., & Kotrotsos, S. (2015). Intelligent 5G networks: Managing 5G wireless/mobile broadband. IEEE Vehicular Technology Magazine,10(3), 41–50.CrossRef
3.
Zurück zum Zitat Chedia, J., & Belgacem, C. (2018). Performance of caching in wireless small cell networks. Journal of Telecommunication, Electronic and Computer Engineering,10(1), 35–43. Chedia, J., & Belgacem, C. (2018). Performance of caching in wireless small cell networks. Journal of Telecommunication, Electronic and Computer Engineering,10(1), 35–43.
4.
Zurück zum Zitat Emmanuel, A. B., Tekanyi, A., Yahaya, M., & Gadam, M. A. (2017). Improving load balancing in various user distribution LTE advanced HetNets through a hybrid channel-gain access-aware cell selection scheme. Journal of Telecommunication, Electronic and Computer Engineering,10(1), 17–23. Emmanuel, A. B., Tekanyi, A., Yahaya, M., & Gadam, M. A. (2017). Improving load balancing in various user distribution LTE advanced HetNets through a hybrid channel-gain access-aware cell selection scheme. Journal of Telecommunication, Electronic and Computer Engineering,10(1), 17–23.
5.
Zurück zum Zitat Sakaguchi, K., Haustein, T., Barbarossa, S., Strinati, E. C., Clemente, A., Destino, G., et al. (2017). Where, when, and how mmWave is used in 5G and beyond. IEICE Transactions on Electronics,100(10), 790–808.CrossRef Sakaguchi, K., Haustein, T., Barbarossa, S., Strinati, E. C., Clemente, A., Destino, G., et al. (2017). Where, when, and how mmWave is used in 5G and beyond. IEICE Transactions on Electronics,100(10), 790–808.CrossRef
6.
Zurück zum Zitat Alsharif, M. H., & Nordin, R. (2017). Evolution towards fifth generation (5G) wireless networks: Current trends and challenges in the deployment of millimetre wave, massive MIMO, and small cells. Telecommunication Systems,64(4), 617–637.CrossRef Alsharif, M. H., & Nordin, R. (2017). Evolution towards fifth generation (5G) wireless networks: Current trends and challenges in the deployment of millimetre wave, massive MIMO, and small cells. Telecommunication Systems,64(4), 617–637.CrossRef
7.
Zurück zum Zitat Andrews, J. G. (2013). Seven ways that HetNets are a cellular paradigm shift. IEEE Communications Magazine,51(3), 136–144.CrossRef Andrews, J. G. (2013). Seven ways that HetNets are a cellular paradigm shift. IEEE Communications Magazine,51(3), 136–144.CrossRef
8.
Zurück zum Zitat Andrews, J. G., Bai, T., Kulkarni, M., Alkhateeb, A., Gupta, A., & Heath, R. W. (2017). Modeling and analyzing millimeter wave cellular systems. IEEE Transactions on Communications,65(1), 403–430. Andrews, J. G., Bai, T., Kulkarni, M., Alkhateeb, A., Gupta, A., & Heath, R. W. (2017). Modeling and analyzing millimeter wave cellular systems. IEEE Transactions on Communications,65(1), 403–430.
9.
Zurück zum Zitat Rappaport, T. S., Heath, R. W., Daniels, R. C., & Murdock, J. N. (2014). Millimeter wave wireless communications. New York: Pearson Education. Rappaport, T. S., Heath, R. W., Daniels, R. C., & Murdock, J. N. (2014). Millimeter wave wireless communications. New York: Pearson Education.
10.
Zurück zum Zitat Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access,1, 335–349.CrossRef Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access,1, 335–349.CrossRef
11.
Zurück zum Zitat Rangan, S., Rappaport, T. S., Erkip, E., Gomez-Cuba, F., Rappaport, T. S., & Erkip, E. (2015). Millimeter-wave cellular wireless networks: Potentials and challenges. Proceedings of the IEEE,102(3), 366–385.CrossRef Rangan, S., Rappaport, T. S., Erkip, E., Gomez-Cuba, F., Rappaport, T. S., & Erkip, E. (2015). Millimeter-wave cellular wireless networks: Potentials and challenges. Proceedings of the IEEE,102(3), 366–385.CrossRef
12.
Zurück zum Zitat Boccardi, F., Heath, R., Lozano, A., Marzetta, T. L., & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communications Magazine,52(2), 74–80.CrossRef Boccardi, F., Heath, R., Lozano, A., Marzetta, T. L., & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communications Magazine,52(2), 74–80.CrossRef
13.
Zurück zum Zitat Pi, Z., & Khan, F. (2011). An introduction to millimeter-wave mobile broadband systems. IEEE Communications Magazine,49(6), 101–107.CrossRef Pi, Z., & Khan, F. (2011). An introduction to millimeter-wave mobile broadband systems. IEEE Communications Magazine,49(6), 101–107.CrossRef
14.
Zurück zum Zitat Mezzavilla, M., Zhang, M., Polese, M., Member, S., Ford, R., Dutta, S., et al. (2018). End-to-end simulation of 5G mmWave networks. IEEE Communications Surveys & Tutorials,20(3), 2237–2263.CrossRef Mezzavilla, M., Zhang, M., Polese, M., Member, S., Ford, R., Dutta, S., et al. (2018). End-to-end simulation of 5G mmWave networks. IEEE Communications Surveys & Tutorials,20(3), 2237–2263.CrossRef
15.
Zurück zum Zitat Chaieb, C., Mlika, Z., Abdelkefi, F., & Ajib, W. (2017). On the user association and resource allocation in HetNets with mmWave BaseStations. In 2017 IEEE 28th annual international symposium on personal, indoor, and mobile radio communications (PIMRC) (pp. 1–5). Chaieb, C., Mlika, Z., Abdelkefi, F., & Ajib, W. (2017). On the user association and resource allocation in HetNets with mmWave BaseStations. In 2017 IEEE 28th annual international symposium on personal, indoor, and mobile radio communications (PIMRC) (pp. 1–5).
16.
Zurück zum Zitat Semiari, O., Saad, W., & Bennis, M. (2016). Downlink cell association and load balancing for joint millimeter wave-microwave cellular networks. In 2016 IEEE global communications conference (GLOBECOM) (pp. 1–6). Wireless VT, Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, United States. Semiari, O., Saad, W., & Bennis, M. (2016). Downlink cell association and load balancing for joint millimeter wave-microwave cellular networks. In 2016 IEEE global communications conference (GLOBECOM) (pp. 1–6). Wireless VT, Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, United States.
17.
Zurück zum Zitat Rebato, M., Mezzavilla, M., Rangan, S., & Zorzi, M. (2017). Hybrid spectrum sharing in mmWave cellular netwroks. IEEE Transactions On Cognitive Communications And Networking,3(2), 155–168.CrossRef Rebato, M., Mezzavilla, M., Rangan, S., & Zorzi, M. (2017). Hybrid spectrum sharing in mmWave cellular netwroks. IEEE Transactions On Cognitive Communications And Networking,3(2), 155–168.CrossRef
18.
Zurück zum Zitat Parsaeefard, S., Dawadi, R., Derakhshani, M., & Le-Ngoc, T. (2016). Joint user-association and resource-allocation in virtualized wireless networks. IEEE Access,4, 2738–2750.CrossRef Parsaeefard, S., Dawadi, R., Derakhshani, M., & Le-Ngoc, T. (2016). Joint user-association and resource-allocation in virtualized wireless networks. IEEE Access,4, 2738–2750.CrossRef
19.
Zurück zum Zitat Zhou, H., Ji, Y., Wang, X., & Zhao, B. (2015). Joint resource allocation and user association for SVC multicast over heterogeneous cellular networks. IEEE Transactions on Wireless Communications,14(7), 3673–3684.CrossRef Zhou, H., Ji, Y., Wang, X., & Zhao, B. (2015). Joint resource allocation and user association for SVC multicast over heterogeneous cellular networks. IEEE Transactions on Wireless Communications,14(7), 3673–3684.CrossRef
20.
Zurück zum Zitat Azam, M. A., Ahmed, A., Naeem, M., Iqbal, M., Ejaz, W., Anpalagan, A., et al. (2017). Efficient joint user association and resource allocation for cloud radio access networks. IEEE Access,5, 1439–1448.CrossRef Azam, M. A., Ahmed, A., Naeem, M., Iqbal, M., Ejaz, W., Anpalagan, A., et al. (2017). Efficient joint user association and resource allocation for cloud radio access networks. IEEE Access,5, 1439–1448.CrossRef
21.
Zurück zum Zitat Yanping, L., & Xuming, F. (2016). Joint user association and resource allocation for self-backhaul ultra-dense networks. China Communications,13(2), 1–10.CrossRef Yanping, L., & Xuming, F. (2016). Joint user association and resource allocation for self-backhaul ultra-dense networks. China Communications,13(2), 1–10.CrossRef
22.
Zurück zum Zitat Zhou, T.-Q., Huang, Y.-M., & Yang, L.-X. (2015). Joint user association and resource partitioning with QoS support for heterogeneous cellular networks. Wireless Personal Communications,83(1), 383–397.CrossRef Zhou, T.-Q., Huang, Y.-M., & Yang, L.-X. (2015). Joint user association and resource partitioning with QoS support for heterogeneous cellular networks. Wireless Personal Communications,83(1), 383–397.CrossRef
23.
Zurück zum Zitat Liu, Y., Lu, L., Li, G. Y., Cui, Q., & Han, W. (2016). Joint user association and spectrum allocation for small cell networks with wireless backhauls. IEEE Wireless Communications Letters,5(5), 496–499.CrossRef Liu, Y., Lu, L., Li, G. Y., Cui, Q., & Han, W. (2016). Joint user association and spectrum allocation for small cell networks with wireless backhauls. IEEE Wireless Communications Letters,5(5), 496–499.CrossRef
24.
Zurück zum Zitat Gong, W., & Wang, X. (2015). Joint user association and resource allocation of device-to-device communication in small cell networks. KSII Transactions on Internet and Information Systems,9(1), 1–19.MathSciNet Gong, W., & Wang, X. (2015). Joint user association and resource allocation of device-to-device communication in small cell networks. KSII Transactions on Internet and Information Systems,9(1), 1–19.MathSciNet
25.
Zurück zum Zitat Feng, M., Mao, S., & Jiang, T. (2018). Joint frame design, resource allocation and user association for massive MIMO heterogeneous networks with wireless backhaul. IEEE Transactions on Wireless Communications,17(3), 1937–1950.CrossRef Feng, M., Mao, S., & Jiang, T. (2018). Joint frame design, resource allocation and user association for massive MIMO heterogeneous networks with wireless backhaul. IEEE Transactions on Wireless Communications,17(3), 1937–1950.CrossRef
26.
Zurück zum Zitat Ekti, A. R., Wang, X., Ismail, M., Serpedin, E., & Qaraqe, K. A. (2016). Joint user association and data-rate allocation in heterogeneous wireless networks. IEEE Transactions on Vehicular Technology,65(9), 7403–7414.CrossRef Ekti, A. R., Wang, X., Ismail, M., Serpedin, E., & Qaraqe, K. A. (2016). Joint user association and data-rate allocation in heterogeneous wireless networks. IEEE Transactions on Vehicular Technology,65(9), 7403–7414.CrossRef
27.
Zurück zum Zitat Chen, Y., Li, J., Chen, W., Lin, Z., & Vucetic, B. (2016). Joint user association and resource allocation in the downlink of heterogeneous networks. IEEE Transactions on Vehicular Technology,65(7), 5701–5706.CrossRef Chen, Y., Li, J., Chen, W., Lin, Z., & Vucetic, B. (2016). Joint user association and resource allocation in the downlink of heterogeneous networks. IEEE Transactions on Vehicular Technology,65(7), 5701–5706.CrossRef
28.
Zurück zum Zitat Zheng, J., Gao, L., Wang, H., Niu, J., Li, X., & Ren, J. (2017). EE-eICIC: Energy-efficient optimization of joint user association and ABS for eICIC in heterogeneous cellular networks. Wireless Communications & Mobile Computing,201, 1–11.CrossRef Zheng, J., Gao, L., Wang, H., Niu, J., Li, X., & Ren, J. (2017). EE-eICIC: Energy-efficient optimization of joint user association and ABS for eICIC in heterogeneous cellular networks. Wireless Communications & Mobile Computing,201, 1–11.CrossRef
29.
Zurück zum Zitat Zhang, H., Huang, S., Jiang, C., Long, K., Leung, V. C. M., & Poor, H. V. (2017). Energy efficient user association and power allocation in millimeter-wave-based ultra dense networks with energy harvesting base stations. IEEE Journal on Selected Areas in Communications,35(9), 1936–1947.CrossRef Zhang, H., Huang, S., Jiang, C., Long, K., Leung, V. C. M., & Poor, H. V. (2017). Energy efficient user association and power allocation in millimeter-wave-based ultra dense networks with energy harvesting base stations. IEEE Journal on Selected Areas in Communications,35(9), 1936–1947.CrossRef
30.
Zurück zum Zitat Zhou, T., Jiang, N., Liu, Z., & Li, C. (2018). Joint cell activation and selection for green communications in ultra-dense heterogeneous networks. IEEE Access,6, 1894–1904.CrossRef Zhou, T., Jiang, N., Liu, Z., & Li, C. (2018). Joint cell activation and selection for green communications in ultra-dense heterogeneous networks. IEEE Access,6, 1894–1904.CrossRef
31.
Zurück zum Zitat Li, Y., Sheng, M., Sun, Y., & Shi, Y. (2016). Joint optimization of BS operation, user association, subcarrier assignment, and power allocation for energy-efficient HetNets. IEEE Journal on Selected Areas in Communications,34(12), 3339–3353.CrossRef Li, Y., Sheng, M., Sun, Y., & Shi, Y. (2016). Joint optimization of BS operation, user association, subcarrier assignment, and power allocation for energy-efficient HetNets. IEEE Journal on Selected Areas in Communications,34(12), 3339–3353.CrossRef
32.
Zurück zum Zitat Zola, E., Kassler, A. J., & Kim, W. (2017). Joint user association and energy aware routing for green small cell mmWave backhaul networks. In 2017 IEEE wireless communications and networking conference (WCNC) (pp. 1–6). Dept. of Network Engineering, UPC—BarcelonaTECH, Spain. Zola, E., Kassler, A. J., & Kim, W. (2017). Joint user association and energy aware routing for green small cell mmWave backhaul networks. In 2017 IEEE wireless communications and networking conference (WCNC) (pp. 1–6). Dept. of Network Engineering, UPC—BarcelonaTECH, Spain.
33.
Zurück zum Zitat Zhou, T., Liu, Z., Zhao, J., Li, C., & Yang, L. (2018). Joint user association and power control for load balancing in downlink heterogeneous cellular networks. IEEE Transactions on Vehicular Technology,67(3), 2582–2593.CrossRef Zhou, T., Liu, Z., Zhao, J., Li, C., & Yang, L. (2018). Joint user association and power control for load balancing in downlink heterogeneous cellular networks. IEEE Transactions on Vehicular Technology,67(3), 2582–2593.CrossRef
34.
Zurück zum Zitat Semiari, O., Saad, W., & Bennis, M. (2016). Downlink cell association and load balancing for joint millimeter wave-microwave cellular networks. IEEE Global Communications Conference (GLOBECOM),2016, 1–6. Semiari, O., Saad, W., & Bennis, M. (2016). Downlink cell association and load balancing for joint millimeter wave-microwave cellular networks. IEEE Global Communications Conference (GLOBECOM),2016, 1–6.
35.
Zurück zum Zitat Ge, X., Li, X., Jin, H., Cheng, J., & Leung, V. C. M. (2018). Joint user association and user scheduling for load balancing in heterogeneous networks. IEEE Transactions on Wireless Communications,17(5), 3211–3225.CrossRef Ge, X., Li, X., Jin, H., Cheng, J., & Leung, V. C. M. (2018). Joint user association and user scheduling for load balancing in heterogeneous networks. IEEE Transactions on Wireless Communications,17(5), 3211–3225.CrossRef
36.
Zurück zum Zitat Weiss, T. A., & Jondral, F. K. (2004). Spectrum pooling: An innovative strategy for the enhancement of spectrum efficiency. IEEE Communications Magazine,42(3), 8–14.CrossRef Weiss, T. A., & Jondral, F. K. (2004). Spectrum pooling: An innovative strategy for the enhancement of spectrum efficiency. IEEE Communications Magazine,42(3), 8–14.CrossRef
37.
Zurück zum Zitat Ramazanali, H., Mesodiakaki, A., Vinel, A., & Verikoukis, C. (2016). Survey of user association in 5G HetNets. In 2016 8th IEEE Latin-American conference on communications (LATINCOM) (pp. 1–6). Ramazanali, H., Mesodiakaki, A., Vinel, A., & Verikoukis, C. (2016). Survey of user association in 5G HetNets. In 2016 8th IEEE Latin-American conference on communications (LATINCOM) (pp. 1–6).
38.
Zurück zum Zitat Liu, D., Wang, L., Chen, Y., Elkashlan, M., Wong, K. K., Schober, R., et al. (2016). User association in 5G networks: A survey and an outlook. IEEE Communications Surveys and Tutorials,18(2), 1018–1044.CrossRef Liu, D., Wang, L., Chen, Y., Elkashlan, M., Wong, K. K., Schober, R., et al. (2016). User association in 5G networks: A survey and an outlook. IEEE Communications Surveys and Tutorials,18(2), 1018–1044.CrossRef
39.
Zurück zum Zitat Zhou, H., Xu, W., Bi, Y., Chen, J., Yu, Q., & Shen, X. S. (2017). Toward 5G spectrum sharing for immersive-experience-driven vehicular communications. IEEE Wireless Communications,24(6), 30–37.CrossRef Zhou, H., Xu, W., Bi, Y., Chen, J., Yu, Q., & Shen, X. S. (2017). Toward 5G spectrum sharing for immersive-experience-driven vehicular communications. IEEE Wireless Communications,24(6), 30–37.CrossRef
40.
Zurück zum Zitat Massaro, M. (2017). Next generation of radio spectrum management: Licensed shared access for 5G. Telecommunications Policy,41(5–6), 422–433.CrossRef Massaro, M. (2017). Next generation of radio spectrum management: Licensed shared access for 5G. Telecommunications Policy,41(5–6), 422–433.CrossRef
41.
Zurück zum Zitat Kour, H., Jha, R. K., & Jain, S. (2018). A comprehensive survey on spectrum sharing: Architecture, energy efficiency and security issues. Journal of Network and Computer Applications,103, 29–57.CrossRef Kour, H., Jha, R. K., & Jain, S. (2018). A comprehensive survey on spectrum sharing: Architecture, energy efficiency and security issues. Journal of Network and Computer Applications,103, 29–57.CrossRef
42.
Zurück zum Zitat Yang, C., Li, J., Guizani, M., Anpalagan, A., & Elkashlan, M. (2016). Advanced spectrum sharing in 5G cognitive heterogeneous networks. IEEE Wireless Communications,23(2), 94–101.CrossRef Yang, C., Li, J., Guizani, M., Anpalagan, A., & Elkashlan, M. (2016). Advanced spectrum sharing in 5G cognitive heterogeneous networks. IEEE Wireless Communications,23(2), 94–101.CrossRef
43.
Zurück zum Zitat Mustonen, M., Matinmikko, M., Holland, O., & Roberson, D. (2017). Process model for recent spectrum sharing concepts in policy making. Telecommunications Policy,41(5–6), 391–404.CrossRef Mustonen, M., Matinmikko, M., Holland, O., & Roberson, D. (2017). Process model for recent spectrum sharing concepts in policy making. Telecommunications Policy,41(5–6), 391–404.CrossRef
44.
Zurück zum Zitat Miia Mustonen, A. M. P., Chen, Tao, Saarnisaari, Harri, & Marja Matinmikko, S. Y. (2014). Cellular architecture enhancement for licensed shared access concept supporting the European Licensed Shared access concept. IEEE Wireless Communications,21(3), 37–43.CrossRef Miia Mustonen, A. M. P., Chen, Tao, Saarnisaari, Harri, & Marja Matinmikko, S. Y. (2014). Cellular architecture enhancement for licensed shared access concept supporting the European Licensed Shared access concept. IEEE Wireless Communications,21(3), 37–43.CrossRef
45.
Zurück zum Zitat Bose, J. C. (1927). Collected physical papers (pp. 1–373). New York, NY: Longmans, Green and Co.MATH Bose, J. C. (1927). Collected physical papers (pp. 1–373). New York, NY: Longmans, Green and Co.MATH
46.
Zurück zum Zitat Sengupta, D. L., Sarkar, T. K., & Sen, D. (1998). Centennial of the semiconductor diode detector. Proceedings of the IEEE,86(1), 235–242.CrossRef Sengupta, D. L., Sarkar, T. K., & Sen, D. (1998). Centennial of the semiconductor diode detector. Proceedings of the IEEE,86(1), 235–242.CrossRef
47.
Zurück zum Zitat Emerson, D. T. (1997). The work of Jagadis Chandra Bose: 100 years of millimeter-wave research. IEEE Transactions on Microwave Theory and Techniques,45(12), 2267–2273.CrossRef Emerson, D. T. (1997). The work of Jagadis Chandra Bose: 100 years of millimeter-wave research. IEEE Transactions on Microwave Theory and Techniques,45(12), 2267–2273.CrossRef
48.
Zurück zum Zitat Marcus, M., & Pattan, B. (2005). Millimeter wave propagation: Spectrum management implications. IEEE Microwave Magazine,6(2), 54–62.CrossRef Marcus, M., & Pattan, B. (2005). Millimeter wave propagation: Spectrum management implications. IEEE Microwave Magazine,6(2), 54–62.CrossRef
49.
Zurück zum Zitat Matinmikko, M., Latva-aho, M., Ahokangas, P., & Seppänen, V. (2018). On regulations for 5G: Micro licensing for locally operated networks. Telecommunications Policy,24(8), 622–635.CrossRef Matinmikko, M., Latva-aho, M., Ahokangas, P., & Seppänen, V. (2018). On regulations for 5G: Micro licensing for locally operated networks. Telecommunications Policy,24(8), 622–635.CrossRef
50.
Zurück zum Zitat Hemadeh, I. A., Satyanarayana, K., El-Hajjar, M., & Hanzo, L. (2018). Millimeter-wave communications: Physical channel models, design considerations, antenna constructions and link-budget. IEEE Communications Surveys & Tutorials,20(2), 870–913.CrossRef Hemadeh, I. A., Satyanarayana, K., El-Hajjar, M., & Hanzo, L. (2018). Millimeter-wave communications: Physical channel models, design considerations, antenna constructions and link-budget. IEEE Communications Surveys & Tutorials,20(2), 870–913.CrossRef
51.
Zurück zum Zitat Rappaport, T. S., Xing, Y., MacCartney, G. R., Molisch, A. F., Mellios, E., & Zhang, J. (2017). Overview of millimeter wave communications for fifth-generation (5G) wireless networks-with a focus on propagation models. IEEE Transactions on Antennas and Propagation,65(12), 6213–6230.CrossRef Rappaport, T. S., Xing, Y., MacCartney, G. R., Molisch, A. F., Mellios, E., & Zhang, J. (2017). Overview of millimeter wave communications for fifth-generation (5G) wireless networks-with a focus on propagation models. IEEE Transactions on Antennas and Propagation,65(12), 6213–6230.CrossRef
52.
Zurück zum Zitat Elkashlan, M., Duong, T. Q., & Chen, H. H. (2014). Millimeter-wave communications for 5G: Fundamentals: Part I. IEEE Communications Magazine,52(9), 52–54.CrossRef Elkashlan, M., Duong, T. Q., & Chen, H. H. (2014). Millimeter-wave communications for 5G: Fundamentals: Part I. IEEE Communications Magazine,52(9), 52–54.CrossRef
53.
Zurück zum Zitat Shokri-Ghadikolaei, H., Fischione, C., Fodor, G., Popovski, P., & Zorzi, M. (2015). Millimeter wave cellular networks: A MAC layer perspective. IEEE Transactions on Communications,63(10), 3437–3458.CrossRef Shokri-Ghadikolaei, H., Fischione, C., Fodor, G., Popovski, P., & Zorzi, M. (2015). Millimeter wave cellular networks: A MAC layer perspective. IEEE Transactions on Communications,63(10), 3437–3458.CrossRef
54.
Zurück zum Zitat Qiu, Y., Zhang, H., Long, K., Huang, Y., Song, X., & Leung, V. C. M. (2018). Energy-efficient power allocation with interference mitigation in MmWave-based fog radio access networks. IEEE Wireless Communications,25(4), 25–31.CrossRef Qiu, Y., Zhang, H., Long, K., Huang, Y., Song, X., & Leung, V. C. M. (2018). Energy-efficient power allocation with interference mitigation in MmWave-based fog radio access networks. IEEE Wireless Communications,25(4), 25–31.CrossRef
55.
Zurück zum Zitat FCC. (2016). Report and order and further notice of proposed rulemaking. Federal Communications Commission, FCC, 16–89 FCC. (2016). Report and order and further notice of proposed rulemaking. Federal Communications Commission, FCC, 16–89
56.
Zurück zum Zitat Al-Falahy, N., & Alani, O. Y. (2017). Technologies for 5G networks: Challenges and opportunities. IT Professional,19(1), 12–20.CrossRef Al-Falahy, N., & Alani, O. Y. (2017). Technologies for 5G networks: Challenges and opportunities. IT Professional,19(1), 12–20.CrossRef
57.
Zurück zum Zitat Yu, Y., Baltus, P. G. M., & Roermund, A. H. M. van. (2011). Integrated 60 GHz RF Beamforming in CMOS. Springer Science & Business Media. Yu, Y., Baltus, P. G. M., & Roermund, A. H. M. van. (2011). Integrated 60 GHz RF Beamforming in CMOS. Springer Science & Business Media.
58.
Zurück zum Zitat Busari, S. A., Member, S., Mohammed, K., Huq, S., Member, S., & Mumtaz, S. (2018). Millimeter-wave massive MIMO communication for future wireless systems: A Survey. IEEE Communications Surveys & Tutorials,20(2), 836–869.CrossRef Busari, S. A., Member, S., Mohammed, K., Huq, S., Member, S., & Mumtaz, S. (2018). Millimeter-wave massive MIMO communication for future wireless systems: A Survey. IEEE Communications Surveys & Tutorials,20(2), 836–869.CrossRef
59.
Zurück zum Zitat Shokri-Ghadikolaei, H., Boccardi, F., Fischione, C., Fodor, G., & Zorzi, M. (2016). Spectrum sharing in mmWave cellular networks via cell association, coordination, and beamforming. IEEE Journal on Selected Areas in Communications,34(11), 2902–2917.CrossRef Shokri-Ghadikolaei, H., Boccardi, F., Fischione, C., Fodor, G., & Zorzi, M. (2016). Spectrum sharing in mmWave cellular networks via cell association, coordination, and beamforming. IEEE Journal on Selected Areas in Communications,34(11), 2902–2917.CrossRef
60.
Zurück zum Zitat Gupta, A. K., Andrews, J. G., & Heath, R. W. (2016). On the feasibility of sharing spectrum licenses in mmWave cellular systems. IEEE Transactions on Communications,64(9), 3981–3995.CrossRef Gupta, A. K., Andrews, J. G., & Heath, R. W. (2016). On the feasibility of sharing spectrum licenses in mmWave cellular systems. IEEE Transactions on Communications,64(9), 3981–3995.CrossRef
61.
Zurück zum Zitat Berraki, D. E., Armour, S. M. D., & Nix, A. R. (2014). Codebook based beamforming and multiuser scheduling scheme for mmWave outdoor cellular systems in the 28, 38 and 60 GHz bands. In 2014 IEEE Globecom workshops (GC Wkshps) (pp. 382–387). Berraki, D. E., Armour, S. M. D., & Nix, A. R. (2014). Codebook based beamforming and multiuser scheduling scheme for mmWave outdoor cellular systems in the 28, 38 and 60 GHz bands. In 2014 IEEE Globecom workshops (GC Wkshps) (pp. 382–387).
62.
Zurück zum Zitat Ko, J., Cho, Y. J., Hur, S., Kim, T., Park, J., Molisch, A. F., et al. (2017). Millimeter-wave channel measurements and analysis for statistical spatial channel model in in-building and urban environments at 28 GHz. IEEE Transactions on Wireless Communications,16(9), 5853–5868.CrossRef Ko, J., Cho, Y. J., Hur, S., Kim, T., Park, J., Molisch, A. F., et al. (2017). Millimeter-wave channel measurements and analysis for statistical spatial channel model in in-building and urban environments at 28 GHz. IEEE Transactions on Wireless Communications,16(9), 5853–5868.CrossRef
63.
Zurück zum Zitat Lee, J. H., Choi, J. S., & Kim, S. C. (2018). Cell coverage analysis of 28 GHZ millimeter wave in urban microcell environment using 3-D ray tracing. IEEE Transactions on Antennas and Propagation,66(3), 1479–1487.CrossRef Lee, J. H., Choi, J. S., & Kim, S. C. (2018). Cell coverage analysis of 28 GHZ millimeter wave in urban microcell environment using 3-D ray tracing. IEEE Transactions on Antennas and Propagation,66(3), 1479–1487.CrossRef
64.
Zurück zum Zitat Attiah, M. L., Isa, A. A. M., Zakaria, Z., Abdullah, N. F., Ismail, M., & Nordin, R. (2018). Adaptive multi-state millimeter wave cell selection scheme for 5G communications. International Journal of Electrical and Computer Engineering (IJECE),8(5), 2967–2978.CrossRef Attiah, M. L., Isa, A. A. M., Zakaria, Z., Abdullah, N. F., Ismail, M., & Nordin, R. (2018). Adaptive multi-state millimeter wave cell selection scheme for 5G communications. International Journal of Electrical and Computer Engineering (IJECE),8(5), 2967–2978.CrossRef
65.
Zurück zum Zitat Wei, L., Hu, R. Q., Qian, Y., & Wu, G. (2014). Key elements to enable millimeter wave communications for 5G wireless systems. IEEE Wireless Communications,21(6), 136–143.CrossRef Wei, L., Hu, R. Q., Qian, Y., & Wu, G. (2014). Key elements to enable millimeter wave communications for 5G wireless systems. IEEE Wireless Communications,21(6), 136–143.CrossRef
66.
Zurück zum Zitat Busari, S. A., Member, S., Mohammed, K., Huq, S., Member, S., & Mumtaz, S. (2018). Millimeter-wave massive MIMO communication for future wireless systems: A survey. IEEE Communications Surveys & Tutorials,20(2), 836–869.CrossRef Busari, S. A., Member, S., Mohammed, K., Huq, S., Member, S., & Mumtaz, S. (2018). Millimeter-wave massive MIMO communication for future wireless systems: A survey. IEEE Communications Surveys & Tutorials,20(2), 836–869.CrossRef
67.
Zurück zum Zitat Asghar, A., Farooq, H., & Imran, A. (2018). On concurrent optimization of coverage, capacity and load balance in HetNets through joint self-organization of soft and hard cell association parameters. IEEE Transactions on Vehicular Technology,67(9), 8781–8795.CrossRef Asghar, A., Farooq, H., & Imran, A. (2018). On concurrent optimization of coverage, capacity and load balance in HetNets through joint self-organization of soft and hard cell association parameters. IEEE Transactions on Vehicular Technology,67(9), 8781–8795.CrossRef
68.
Zurück zum Zitat Han, Q., Yang, B., Chen, C., & Guan, X. (2016). Energy-aware and QoS-aware load balancing for HetNets powered by renewable energy. Computer Networks,94, 250–262.CrossRef Han, Q., Yang, B., Chen, C., & Guan, X. (2016). Energy-aware and QoS-aware load balancing for HetNets powered by renewable energy. Computer Networks,94, 250–262.CrossRef
69.
Zurück zum Zitat Kyocera. (2010). Potential performance of range expansion in macro-pico deployment (r1-104355). In Proceedings of the 3GPP TSG RAN WG1 Meeting-62, Madrid, Spain (pp. 23–27). Kyocera. (2010). Potential performance of range expansion in macro-pico deployment (r1-104355). In Proceedings of the 3GPP TSG RAN WG1 Meeting-62, Madrid, Spain (pp. 23–27).
70.
Zurück zum Zitat Al-rubaye, S., Senior, M., Al-dulaimi, A., Senior, M., Cosmas, J., et al. (2018). Call admission control for non-standalone 5G ultra-dense networks. IEEECommunications Letters,22(5), 1058–1061. Al-rubaye, S., Senior, M., Al-dulaimi, A., Senior, M., Cosmas, J., et al. (2018). Call admission control for non-standalone 5G ultra-dense networks. IEEECommunications Letters,22(5), 1058–1061.
71.
Zurück zum Zitat Tesema, F. B., Awada, A., Viering, I., Simsek, M., & Fettweis, G. P. (2017). Multiconnectivity for mobility robustness in standalone 5G ultra dense networks with intrafrequency cloud radio access. Wireless Communications and Mobile Computing, 2017(Volume 2017, Article ID 2038078). Tesema, F. B., Awada, A., Viering, I., Simsek, M., & Fettweis, G. P. (2017). Multiconnectivity for mobility robustness in standalone 5G ultra dense networks with intrafrequency cloud radio access. Wireless Communications and Mobile Computing, 2017(Volume 2017, Article ID 2038078).
72.
Zurück zum Zitat Kitindi, E. J., Fu, S. H. U., Jia, Y., Kabir, A., & Wang, Y. (2017). Wireless network virtualization with SDN and C-RAN for 5G networks: Requirements, opportunities, and challenges. IEEE Access,5, 19099–19115.CrossRef Kitindi, E. J., Fu, S. H. U., Jia, Y., Kabir, A., & Wang, Y. (2017). Wireless network virtualization with SDN and C-RAN for 5G networks: Requirements, opportunities, and challenges. IEEE Access,5, 19099–19115.CrossRef
73.
Zurück zum Zitat Kamel, M., Member, S., Hamouda, W., & Member, S. (2019). Ultra-dense networks: A survey,18(4), 2522–2545. Kamel, M., Member, S., Hamouda, W., & Member, S. (2019). Ultra-dense networks: A survey,18(4), 2522–2545.
74.
Zurück zum Zitat Andrews, J. G., Singh, S., & Lin, X. (2014). An overview of load balancing in HetNets: old myths and open problems. IEEE Wireless Communications,21(2), 18–25.CrossRef Andrews, J. G., Singh, S., & Lin, X. (2014). An overview of load balancing in HetNets: old myths and open problems. IEEE Wireless Communications,21(2), 18–25.CrossRef
75.
Zurück zum Zitat Chowdhury, M. Z., & Jang, Y. M. (2013). Handover management in high-dense femtocellular networks. Journal on Wireless Communications and Networking,1, 1–21. Chowdhury, M. Z., & Jang, Y. M. (2013). Handover management in high-dense femtocellular networks. Journal on Wireless Communications and Networking,1, 1–21.
76.
Zurück zum Zitat Chen, S., Qin, F., Hu, B., Li, X., & Chen, Z. (2016). User-centric ultra-dense networks for 5G: Challenges, methodologies, and directions. IEEE Wireless Communications,23(2), 78–85.CrossRef Chen, S., Qin, F., Hu, B., Li, X., & Chen, Z. (2016). User-centric ultra-dense networks for 5G: Challenges, methodologies, and directions. IEEE Wireless Communications,23(2), 78–85.CrossRef
77.
Zurück zum Zitat Mesodiakaki, A., Adelantado, F., Alonso, L., Di Renzo, M., & Verikoukis, C. (2017). Energy- and spectrum-efficient user association in millimeter-wave backhaul small-cell networks. IEEE Transactions on Vehicular Technology,66(2), 1810–1821.CrossRef Mesodiakaki, A., Adelantado, F., Alonso, L., Di Renzo, M., & Verikoukis, C. (2017). Energy- and spectrum-efficient user association in millimeter-wave backhaul small-cell networks. IEEE Transactions on Vehicular Technology,66(2), 1810–1821.CrossRef
78.
Zurück zum Zitat Mesodiakaki, A., Zola, E., & Kassler, A. (2017). User association in 5G heterogeneous networks with mesh millimeter wave backhaul links. In 18th IEEE international symposium on a world of wireless, mobile and multimedia networks, WoWMoM 2017 conference. Mesodiakaki, A., Zola, E., & Kassler, A. (2017). User association in 5G heterogeneous networks with mesh millimeter wave backhaul links. In 18th IEEE international symposium on a world of wireless, mobile and multimedia networks, WoWMoM 2017 conference.
79.
Zurück zum Zitat Singh, S., Kulkarni, M. N., Ghosh, A., & Andrews, J. G. (2015). Tractable model for rate in self-backhauled millimeter wave cellular networks. IEEE Journal on Selected Areas in Communications,33(10), 2191–2211.CrossRef Singh, S., Kulkarni, M. N., Ghosh, A., & Andrews, J. G. (2015). Tractable model for rate in self-backhauled millimeter wave cellular networks. IEEE Journal on Selected Areas in Communications,33(10), 2191–2211.CrossRef
80.
Zurück zum Zitat Yanping, L., & Xuming, F. (2016). Joint user association and resource allocation for self-backhaul ultra-dense networks. China Communications,13(2), 1–10.CrossRef Yanping, L., & Xuming, F. (2016). Joint user association and resource allocation for self-backhaul ultra-dense networks. China Communications,13(2), 1–10.CrossRef
81.
Zurück zum Zitat Buzzi, S., Member, S., Member, S., Klein, T. E., Poor, V., Yang, C., et al. (2016). A survey of energy-efficient techniques for 5G networks and challenges ahead. IEEE Journal on Selected Areas in Communications,34(4), 697–709.CrossRef Buzzi, S., Member, S., Member, S., Klein, T. E., Poor, V., Yang, C., et al. (2016). A survey of energy-efficient techniques for 5G networks and challenges ahead. IEEE Journal on Selected Areas in Communications,34(4), 697–709.CrossRef
82.
Zurück zum Zitat Munir, H., Hassan, S. A., Pervaiz, H., Ni, Q., & Musavian, L. (2016). Energy efficient resource allocation in 5 g hybrid heterogeneous networks: A game theoretic approach. In: 2016 IEEE 84th vehicular technology conference (VTC-Fall) (pp. 1–5). Munir, H., Hassan, S. A., Pervaiz, H., Ni, Q., & Musavian, L. (2016). Energy efficient resource allocation in 5 g hybrid heterogeneous networks: A game theoretic approach. In: 2016 IEEE 84th vehicular technology conference (VTC-Fall) (pp. 1–5).
83.
Zurück zum Zitat Xu, B., Chen, Y., Elkashlan, M., Zhang, T., & Wong, K. K. (2016). User association in massive MIMO and mmWave enabled HetNets powered by renewable energy. IEEE Wireless Communications and Networking Conference (WCNC),2016, (pp. 1–6). Xu, B., Chen, Y., Elkashlan, M., Zhang, T., & Wong, K. K. (2016). User association in massive MIMO and mmWave enabled HetNets powered by renewable energy. IEEE Wireless Communications and Networking Conference (WCNC),2016, (pp. 1–6).
84.
Zurück zum Zitat Niu, Y., Li, Y., Jin, D., Su, L., & Vasilakos, A. V. (2015). A survey of millimeter wave communications (mmWave) for 5G: Opportunities and challenges. Wireless Networks,21(8), 2657–2676.CrossRef Niu, Y., Li, Y., Jin, D., Su, L., & Vasilakos, A. V. (2015). A survey of millimeter wave communications (mmWave) for 5G: Opportunities and challenges. Wireless Networks,21(8), 2657–2676.CrossRef
85.
Zurück zum Zitat Bai, T., & Heath Jr., R. W. (2014). Analysis of self-body blocking effects in millimeter wave cellular networks. In 2014 48th Asilomar conference on signals, systems and computers (pp. 1921–1925). Bai, T., & Heath Jr., R. W. (2014). Analysis of self-body blocking effects in millimeter wave cellular networks. In 2014 48th Asilomar conference on signals, systems and computers (pp. 1921–1925).
86.
Zurück zum Zitat Bai, T., & Heath, R. W. (2015). Coverage and rate analysis for millimeter-wave cellular networks. IEEE Transactions on Wireless Communications,14(2), 1100–1114.CrossRef Bai, T., & Heath, R. W. (2015). Coverage and rate analysis for millimeter-wave cellular networks. IEEE Transactions on Wireless Communications,14(2), 1100–1114.CrossRef
87.
Zurück zum Zitat Sattar, Z., Evangelista, J. V. C., Kaddoum, G., & Batani, N. (2018). Analysis of the cell association for decoupled wireless access in a two tier network. 2017 IEEE 28th annual international symposium on personal, indoor, and mobile radio communications (PIMRC) (pp. 1–6). Sattar, Z., Evangelista, J. V. C., Kaddoum, G., & Batani, N. (2018). Analysis of the cell association for decoupled wireless access in a two tier network. 2017 IEEE 28th annual international symposium on personal, indoor, and mobile radio communications (PIMRC) (pp. 1–6).
88.
Zurück zum Zitat Qiao, J., Cai, L. X., Shen, X. S., Mark, J. W., & Fellow, L. (2011). Enabling multi-hop concurrent transmissions in 60 GHz. Wireless Personal Area Networks,10(11), 3824–3833. Qiao, J., Cai, L. X., Shen, X. S., Mark, J. W., & Fellow, L. (2011). Enabling multi-hop concurrent transmissions in 60 GHz. Wireless Personal Area Networks,10(11), 3824–3833.
89.
Zurück zum Zitat Wu, S., Member, S., Atat, R., & Member, S. (2018). Improving the coverage and spectral efficiency of millimeter-wave cellular networks using device-to-device relays. IEEE Transactions on Communications,66(5), 2251–2265.CrossRef Wu, S., Member, S., Atat, R., & Member, S. (2018). Improving the coverage and spectral efficiency of millimeter-wave cellular networks using device-to-device relays. IEEE Transactions on Communications,66(5), 2251–2265.CrossRef
90.
Zurück zum Zitat Boccardi, F., Andrews, J., Elshaer, H., Dohler, M., Parkvall, S., Popovski, P., et al. (2016). Why to decouple the uplink and downlink in cellular networks and how to do it. IEEE Communications Magazine,54(3), 110–117.CrossRef Boccardi, F., Andrews, J., Elshaer, H., Dohler, M., Parkvall, S., Popovski, P., et al. (2016). Why to decouple the uplink and downlink in cellular networks and how to do it. IEEE Communications Magazine,54(3), 110–117.CrossRef
91.
Zurück zum Zitat Elshaer, H., Kulkarni, M. N., Boccardi, F., Andrews, J. G., & Dohler, M. (2016). Downlink and uplink cell association with traditional macrocells and millimeter wave small cells. IEEE Transactions on Wireless Communications,15(9), 6244–6258.CrossRef Elshaer, H., Kulkarni, M. N., Boccardi, F., Andrews, J. G., & Dohler, M. (2016). Downlink and uplink cell association with traditional macrocells and millimeter wave small cells. IEEE Transactions on Wireless Communications,15(9), 6244–6258.CrossRef
92.
Zurück zum Zitat Bhatti, O. W., Suhail, H., Akbar, U., Hassan, S. A., Pervaiz, H., Musavian, L., & Ni, Q. (2017). Performance analysis of decoupled cell association in multi-tier hybrid networks using real blockage environments. In 2017 13th International wireless communications and mobile computing conference (IWCMC) (pp. 62–67). Bhatti, O. W., Suhail, H., Akbar, U., Hassan, S. A., Pervaiz, H., Musavian, L., & Ni, Q. (2017). Performance analysis of decoupled cell association in multi-tier hybrid networks using real blockage environments. In 2017 13th International wireless communications and mobile computing conference (IWCMC) (pp. 62–67).
93.
Zurück zum Zitat Gao, X., Edfors, O., Rusek, F., & Tufvesson, F. (2015). Massive MIMO performance evaluation based on measured propagation data. IEEE Transactions on Wireless Communications,14(7), 3899–3911.CrossRef Gao, X., Edfors, O., Rusek, F., & Tufvesson, F. (2015). Massive MIMO performance evaluation based on measured propagation data. IEEE Transactions on Wireless Communications,14(7), 3899–3911.CrossRef
94.
Zurück zum Zitat Umer, A., Hassan, S. A., Pervaiz, H., Ni, Q., & Musavian, L. (2017). Coverage and rate analysis for massive mimo-enabled heterogeneous networks with millimeter wave small cells. In 2017 IEEE 85th vehicular technology conference (VTC Spring) (pp. 1–5) Umer, A., Hassan, S. A., Pervaiz, H., Ni, Q., & Musavian, L. (2017). Coverage and rate analysis for massive mimo-enabled heterogeneous networks with millimeter wave small cells. In 2017 IEEE 85th vehicular technology conference (VTC Spring) (pp. 1–5)
95.
Zurück zum Zitat Xia, W., Zhang, J., Jin, S., & Zhu, H. (2017). Delay-based user association in heterogeneous networks with Backhaul. China Communications,14(10), 130–141.CrossRef Xia, W., Zhang, J., Jin, S., & Zhu, H. (2017). Delay-based user association in heterogeneous networks with Backhaul. China Communications,14(10), 130–141.CrossRef
96.
Zurück zum Zitat Ghatak, G., De Domenico, A., & Coupechoux, M. (2018). Modeling and analysis of HetNets with mm-Wave Multi-RAT small cells deployed along roads. In: 2017 IEEE global communications conference (GLOBECOM 2017) (pp. 1–7) Ghatak, G., De Domenico, A., & Coupechoux, M. (2018). Modeling and analysis of HetNets with mm-Wave Multi-RAT small cells deployed along roads. In: 2017 IEEE global communications conference (GLOBECOM 2017) (pp. 1–7)
97.
Zurück zum Zitat Mezzavilla, M., Goyal, S., Panwar, S., Rangan, S., & Zorzi, M. (2016). An MDP model for optimal handover decisions in mmWave cellular networks. In: 2016 European conference on networks and communications (EuCNC) (pp. 100–105) Mezzavilla, M., Goyal, S., Panwar, S., Rangan, S., & Zorzi, M. (2016). An MDP model for optimal handover decisions in mmWave cellular networks. In: 2016 European conference on networks and communications (EuCNC) (pp. 100–105)
98.
Zurück zum Zitat Cacciapuoti, A. S. (2017). Mobility-aware user association for 5G mmWave networks. IEEE Access,5, 21497–21507.CrossRef Cacciapuoti, A. S. (2017). Mobility-aware user association for 5G mmWave networks. IEEE Access,5, 21497–21507.CrossRef
99.
Zurück zum Zitat Shokri-Ghadikolaei, H., Xu, Y., Gkatzikis, L., & Fischione, C. (2015). User association and the alignment-Throughput tradeoff in millimeter wave networks. In 2015 IEEE 1st international forum on research and technologies for society and industry leveraging a better tomorrow (RTSI) (pp. 100–105) Shokri-Ghadikolaei, H., Xu, Y., Gkatzikis, L., & Fischione, C. (2015). User association and the alignment-Throughput tradeoff in millimeter wave networks. In 2015 IEEE 1st international forum on research and technologies for society and industry leveraging a better tomorrow (RTSI) (pp. 100–105)
100.
Zurück zum Zitat Akyildiz, I. F., Lin, S., & Wang, P. (2015). Wireless software-defined networks (W-SDNs) and network function virtualization (NFV) for 5G cellular systems: An overview and qualitative evaluation. Computer Networks,93(1), 66–79.CrossRef Akyildiz, I. F., Lin, S., & Wang, P. (2015). Wireless software-defined networks (W-SDNs) and network function virtualization (NFV) for 5G cellular systems: An overview and qualitative evaluation. Computer Networks,93(1), 66–79.CrossRef
101.
Zurück zum Zitat Lin, S. C., & Akyildiz, I. F. (2017). Dynamic base station formation for solving NLOS problem in 5G millimeter-wave communication. IEEE INFOCOM 2017-IEEE conference on computer communications. Lin, S. C., & Akyildiz, I. F. (2017). Dynamic base station formation for solving NLOS problem in 5G millimeter-wave communication. IEEE INFOCOM 2017-IEEE conference on computer communications.
102.
Zurück zum Zitat Kar, U. N., & Sanyal, D. K. (2018). An overview of device-to-device communication in cellular networks. ICT Express,4(4), 203–208.CrossRef Kar, U. N., & Sanyal, D. K. (2018). An overview of device-to-device communication in cellular networks. ICT Express,4(4), 203–208.CrossRef
103.
Zurück zum Zitat Yi, W., Liu, Y., & Nallanathan, A. (2017). Modeling and analysis of D2D millimeter-wave networks with poisson cluster processes. IEEE Transactions on Communications,65(12), 5574–5588.CrossRef Yi, W., Liu, Y., & Nallanathan, A. (2017). Modeling and analysis of D2D millimeter-wave networks with poisson cluster processes. IEEE Transactions on Communications,65(12), 5574–5588.CrossRef
104.
Zurück zum Zitat Kusaladharma, S., Zhang, Z., & Tellambura, C. (2018). Interference and outage analysis of random D2D networks underlaying millimeter wave cellular networks. IEEE Transactions on Communications,67(1), 778–790.CrossRef Kusaladharma, S., Zhang, Z., & Tellambura, C. (2018). Interference and outage analysis of random D2D networks underlaying millimeter wave cellular networks. IEEE Transactions on Communications,67(1), 778–790.CrossRef
105.
Zurück zum Zitat Kim, J., Park, J., Kim, S., Kim, S. L., Sung, K. W., & Kim, K. S. (2018). Millimeter-wave interference avoidance via building-aware associations. IEEE Access,6, 10618–10634.CrossRef Kim, J., Park, J., Kim, S., Kim, S. L., Sung, K. W., & Kim, K. S. (2018). Millimeter-wave interference avoidance via building-aware associations. IEEE Access,6, 10618–10634.CrossRef
106.
Zurück zum Zitat Biswas, S., Vuppala, S., & Xue, J. (2016). On the performance of relay aided millimeter wave networks. IEEE Journal of Selected Topics in Signal Processing,10(3), 576–588.CrossRef Biswas, S., Vuppala, S., & Xue, J. (2016). On the performance of relay aided millimeter wave networks. IEEE Journal of Selected Topics in Signal Processing,10(3), 576–588.CrossRef
107.
Zurück zum Zitat Xu, Y., Shokri-Ghadikolaei, H., & Fischione, C. (2016). Distributed association and relaying with fairness in millimeter wave networks. IEEE Transactions on Wireless Communications,15(12), 7955–7970.CrossRef Xu, Y., Shokri-Ghadikolaei, H., & Fischione, C. (2016). Distributed association and relaying with fairness in millimeter wave networks. IEEE Transactions on Wireless Communications,15(12), 7955–7970.CrossRef
108.
Zurück zum Zitat Giordani, M., Mezzavilla, M., & Zorzi, M. (2016). Initial access in 5G mmWave cellular networks. IEEE Communications Magazine,54(11), 40–47.CrossRef Giordani, M., Mezzavilla, M., & Zorzi, M. (2016). Initial access in 5G mmWave cellular networks. IEEE Communications Magazine,54(11), 40–47.CrossRef
109.
Zurück zum Zitat Li, X., Fang, J., Li, H., & Wang, P. (2018). Millimeter wave channel estimation via exploiting joint sparse and low-rank structures. IEEE Transactions on Wireless Communications,17(2), 1123–1133.CrossRef Li, X., Fang, J., Li, H., & Wang, P. (2018). Millimeter wave channel estimation via exploiting joint sparse and low-rank structures. IEEE Transactions on Wireless Communications,17(2), 1123–1133.CrossRef
110.
Zurück zum Zitat Barati, C. N., Hosseini, S. A., Mezzavilla, M., Korakis, T., Panwar, S. S., Rangan, S., et al. (2016). Initial access in millimeter wave cellular systems. IEEE Transactions on Wireless Communications,15(12), 7926–7940.CrossRef Barati, C. N., Hosseini, S. A., Mezzavilla, M., Korakis, T., Panwar, S. S., Rangan, S., et al. (2016). Initial access in millimeter wave cellular systems. IEEE Transactions on Wireless Communications,15(12), 7926–7940.CrossRef
111.
Zurück zum Zitat Alkhateeb, A., Alex, S., Varkey, P., Li, Y., Qu, Q., & Tujkovic, D. (2018). Deep learning coordinated beamforming for highly-mobile millimeter wave systems. IEEE Access,6, 37328–37348.CrossRef Alkhateeb, A., Alex, S., Varkey, P., Li, Y., Qu, Q., & Tujkovic, D. (2018). Deep learning coordinated beamforming for highly-mobile millimeter wave systems. IEEE Access,6, 37328–37348.CrossRef
112.
Zurück zum Zitat Li, Y., Andrews, J. G., Baccelli, F., Novlan, T. D., & Zhang, C. (2016). Design and analysis of initial access in millimeter wave cellular networks. IEEE Transactions on Wireless Communications,16(10), 6409–6425.CrossRef Li, Y., Andrews, J. G., Baccelli, F., Novlan, T. D., & Zhang, C. (2016). Design and analysis of initial access in millimeter wave cellular networks. IEEE Transactions on Wireless Communications,16(10), 6409–6425.CrossRef
113.
Zurück zum Zitat Liu, C., Li, M., Collings, I. B., Hanly, S. V., & Whiting, P. (2016). Design and analysis of transmit beamforming for millimetre wave base station discovery. IEEE Transactions on Wireless Communications,16(2), 797–811.CrossRef Liu, C., Li, M., Collings, I. B., Hanly, S. V., & Whiting, P. (2016). Design and analysis of transmit beamforming for millimetre wave base station discovery. IEEE Transactions on Wireless Communications,16(2), 797–811.CrossRef
114.
Zurück zum Zitat Liu, C., Li, M., Hanly, S. V., Collings, I. B., & Whiting, P. (2017). Millimeter wave beam alignment: Large deviations analysis and design insights. IEEE Journal on Selected Areas in Communications,35(7), 1619–1631. Liu, C., Li, M., Hanly, S. V., Collings, I. B., & Whiting, P. (2017). Millimeter wave beam alignment: Large deviations analysis and design insights. IEEE Journal on Selected Areas in Communications,35(7), 1619–1631.
115.
Zurück zum Zitat Qi, Z., & Liu, W. (2018). Three-dimensional millimetre-wave beam tracking based on smart phone sensor measurements and direction of arrival/time of arrival estimation for 5G networks. IET Microwaves, Antennas and Propagation,12(3), 271–279.CrossRef Qi, Z., & Liu, W. (2018). Three-dimensional millimetre-wave beam tracking based on smart phone sensor measurements and direction of arrival/time of arrival estimation for 5G networks. IET Microwaves, Antennas and Propagation,12(3), 271–279.CrossRef
116.
Zurück zum Zitat Zhang, J., Huang, Y., Shi, Q., Wang, J., & Yang, L. (2017). Codebook design for beam alignment in millimeter wave communication systems. IEEE Transactions on Communications,65(11), 4980–4995.CrossRef Zhang, J., Huang, Y., Shi, Q., Wang, J., & Yang, L. (2017). Codebook design for beam alignment in millimeter wave communication systems. IEEE Transactions on Communications,65(11), 4980–4995.CrossRef
117.
Zurück zum Zitat Song, X., Haghighatshoar, S., & Caire, G. (2018). A scalable and statistically robust beam alignment technique for mm-wave systems. IEEE Transactions on Wireless Communications,17(7), 4792–4805.CrossRef Song, X., Haghighatshoar, S., & Caire, G. (2018). A scalable and statistically robust beam alignment technique for mm-wave systems. IEEE Transactions on Wireless Communications,17(7), 4792–4805.CrossRef
118.
Zurück zum Zitat Zang, S., Bao, W., Yeoh, P. L., Chen, H., Lin, Z., Vucetic, B., & Li, Y. (2017). Mobility handover optimization in millimeter wave heterogeneous networks. In 2017 17th International symposium on communications and information technologies (ISCIT) (pp. 1–6) Zang, S., Bao, W., Yeoh, P. L., Chen, H., Lin, Z., Vucetic, B., & Li, Y. (2017). Mobility handover optimization in millimeter wave heterogeneous networks. In 2017 17th International symposium on communications and information technologies (ISCIT) (pp. 1–6)
119.
Zurück zum Zitat Omar, M. S., Anjum, M. A., Hassan, S. A., Pervaiz, H., & Niv, Q. (2016). Performance analysis of hybrid 5G cellular networks exploiting mmWave capabilities in suburban areas. In IEEE international conference on communications (ICC) (pp. 1–6). Omar, M. S., Anjum, M. A., Hassan, S. A., Pervaiz, H., & Niv, Q. (2016). Performance analysis of hybrid 5G cellular networks exploiting mmWave capabilities in suburban areas. In IEEE international conference on communications (ICC) (pp. 1–6).
120.
Zurück zum Zitat Chih-Lin, I., Han, S., Xu, Z., Sun, Q., & Pan, Z. (2016). 5G: Rethink mobile communications for 2020+. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,374(2062), 1–13.CrossRef Chih-Lin, I., Han, S., Xu, Z., Sun, Q., & Pan, Z. (2016). 5G: Rethink mobile communications for 2020+. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,374(2062), 1–13.CrossRef
121.
Zurück zum Zitat Semiari, O., Saad, W., Member, S., Bennis, M., & Member, S. (2018). Caching meets millimeter wave communications for enhanced mobility management in 5G networks. IEEE Transactions on Wireless Communications,17(2), 779–793.CrossRef Semiari, O., Saad, W., Member, S., Bennis, M., & Member, S. (2018). Caching meets millimeter wave communications for enhanced mobility management in 5G networks. IEEE Transactions on Wireless Communications,17(2), 779–793.CrossRef
122.
Zurück zum Zitat Arshad, R., Elsawy, H., Sorour, S., Al-Naffouri, T. Y., & Alouini, M. S. (2016). Handover management in 5G and beyond: A topology aware skipping approach. IEEE Access,4, 9073–9081.CrossRef Arshad, R., Elsawy, H., Sorour, S., Al-Naffouri, T. Y., & Alouini, M. S. (2016). Handover management in 5G and beyond: A topology aware skipping approach. IEEE Access,4, 9073–9081.CrossRef
123.
Zurück zum Zitat Fan, P., & Zhao, J. (n.d.). 5G High Mobility Wireless Communications: Challenges and Solutions. China Communications, 13(Suppl 2), 1–13. Fan, P., & Zhao, J. (n.d.). 5G High Mobility Wireless Communications: Challenges and Solutions. China Communications, 13(Suppl 2), 1–13.
124.
Zurück zum Zitat Ren, X., Chen, W., Member, S., Tao, M., & Member, S. (2015). Position-based compressed channel estimation and pilot design for high-mobility OFDM systems. IEEE Transactions on Vehicular Technology,64(5), 1918–1929.CrossRef Ren, X., Chen, W., Member, S., Tao, M., & Member, S. (2015). Position-based compressed channel estimation and pilot design for high-mobility OFDM systems. IEEE Transactions on Vehicular Technology,64(5), 1918–1929.CrossRef
125.
Zurück zum Zitat Heath, R. W., Gonzalez-Prelcic, N., Rangan, S., Roh, W., & Sayeed, A. M. (2016). An overview of signal processing techniques for millimeter wave MIMO systems. IEEE Journal on Selected Topics in Signal Processing,10(3), 436–453.CrossRef Heath, R. W., Gonzalez-Prelcic, N., Rangan, S., Roh, W., & Sayeed, A. M. (2016). An overview of signal processing techniques for millimeter wave MIMO systems. IEEE Journal on Selected Topics in Signal Processing,10(3), 436–453.CrossRef
126.
Zurück zum Zitat Ali, E., Ismail, M., Nordin, R., & Abdulah, N. F. (2017). Beamforming techniques for massive MIMO systems in 5G: Overview, classification, and trends for future research. Frontiers of Information Technology & Electronic Engineering,18(6), 753–772.CrossRef Ali, E., Ismail, M., Nordin, R., & Abdulah, N. F. (2017). Beamforming techniques for massive MIMO systems in 5G: Overview, classification, and trends for future research. Frontiers of Information Technology & Electronic Engineering,18(6), 753–772.CrossRef
127.
Zurück zum Zitat Gupta, A., Member, S., Jha, R. K., & Member, S. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE access,3, 1206–1232.CrossRef Gupta, A., Member, S., Jha, R. K., & Member, S. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE access,3, 1206–1232.CrossRef
128.
Zurück zum Zitat Ren, H., Liu, N., Pan, C., Elkashlan, M., Nallanathan, A., You, X., et al. (2018). Low-latency C-RAN: An next-generation wireless approach. IEEE Vehicular Technology Magazine,13(2), 48–56.CrossRef Ren, H., Liu, N., Pan, C., Elkashlan, M., Nallanathan, A., You, X., et al. (2018). Low-latency C-RAN: An next-generation wireless approach. IEEE Vehicular Technology Magazine,13(2), 48–56.CrossRef
129.
Zurück zum Zitat Hsieh, P. J., Lin, W. S., Lin, K. H., & Wei, H. Y. (2018). Dual-connectivity prevenient handover scheme in control/user-plane split networks. IEEE Transactions on Vehicular Technology,67(4), 3545–3560.CrossRef Hsieh, P. J., Lin, W. S., Lin, K. H., & Wei, H. Y. (2018). Dual-connectivity prevenient handover scheme in control/user-plane split networks. IEEE Transactions on Vehicular Technology,67(4), 3545–3560.CrossRef
130.
Zurück zum Zitat Pan, M. S., Lin, T. M., & Chen, W. T. (2015). An enhanced handover scheme for mobile relays in LTE-A high-speed rail networks. IEEE Transactions on Vehicular Technology,64(2), 743–756.CrossRef Pan, M. S., Lin, T. M., & Chen, W. T. (2015). An enhanced handover scheme for mobile relays in LTE-A high-speed rail networks. IEEE Transactions on Vehicular Technology,64(2), 743–756.CrossRef
131.
Zurück zum Zitat Semiari, O., Saad, W., Bennis, M., & Maham, B. (2017). Mobility management for heterogeneous networks: Caching meets millimeter wave to provide seamless handover. In GLOBECOM 2017–2017 IEEE global communications conference (pp. 1–6). Semiari, O., Saad, W., Bennis, M., & Maham, B. (2017). Mobility management for heterogeneous networks: Caching meets millimeter wave to provide seamless handover. In GLOBECOM 20172017 IEEE global communications conference (pp. 1–6).
132.
Zurück zum Zitat Chen, M., Hao, Y., Hu, L., Huang, K., & Lau, V. K. N. (2017). Green and mobility-aware caching in 5G networks. IEEE Transactions on Wireless Communications,16(12), 8347–8361.CrossRef Chen, M., Hao, Y., Hu, L., Huang, K., & Lau, V. K. N. (2017). Green and mobility-aware caching in 5G networks. IEEE Transactions on Wireless Communications,16(12), 8347–8361.CrossRef
133.
Zurück zum Zitat Kela, P., Turkka, J., & Costa, M. (2015). Borderless mobility in 5G outdoor ultra-dense networks. IEEE Access,3, 1462–1476.CrossRef Kela, P., Turkka, J., & Costa, M. (2015). Borderless mobility in 5G outdoor ultra-dense networks. IEEE Access,3, 1462–1476.CrossRef
134.
Zurück zum Zitat Vasudeva, K., Dikmese, S., Guvenc, I., Mehbodniya, A., Saad, W., & Adachi, F. (2017). Fuzzy based game theoretic mobility management for energy efficient operation in HetNets. IEEE Access,3536, 7542–7552.CrossRef Vasudeva, K., Dikmese, S., Guvenc, I., Mehbodniya, A., Saad, W., & Adachi, F. (2017). Fuzzy based game theoretic mobility management for energy efficient operation in HetNets. IEEE Access,3536, 7542–7552.CrossRef
135.
Zurück zum Zitat Lu, Y., Xiong, K., Fan, P., Zhong, Z., & Ai, B. (2017). The Effect of power adjustment on handover in high-speed railway communication networks. IEEE Access,5, 26237–26250.CrossRef Lu, Y., Xiong, K., Fan, P., Zhong, Z., & Ai, B. (2017). The Effect of power adjustment on handover in high-speed railway communication networks. IEEE Access,5, 26237–26250.CrossRef
136.
Zurück zum Zitat Mohamed, A., Imran, M. A., Xiao, P., & Tafazolli, R. (2018). Memory-full context-aware predictive mobility management in dual connectivity 5G networks. IEEE Access,6, 9655–9666.CrossRef Mohamed, A., Imran, M. A., Xiao, P., & Tafazolli, R. (2018). Memory-full context-aware predictive mobility management in dual connectivity 5G networks. IEEE Access,6, 9655–9666.CrossRef
137.
Zurück zum Zitat Zhao, J., Liu, Y., Gong, Y., Wang, C., & Fan, L. (2018). A dual-link soft handover scheme for C/U plane split network in high-speed railway. IEEE Access,6, 12473–12482.CrossRef Zhao, J., Liu, Y., Gong, Y., Wang, C., & Fan, L. (2018). A dual-link soft handover scheme for C/U plane split network in high-speed railway. IEEE Access,6, 12473–12482.CrossRef
138.
Zurück zum Zitat Arshad, R., ElSawy, H., Sorour, S., Al-Naffouri, T. Y., & Alouini, M. S. (2017). Velocity-aware handover management in two-tier cellular networks. IEEE Transactions on Wireless Communications,16(3), 1851–1867.CrossRef Arshad, R., ElSawy, H., Sorour, S., Al-Naffouri, T. Y., & Alouini, M. S. (2017). Velocity-aware handover management in two-tier cellular networks. IEEE Transactions on Wireless Communications,16(3), 1851–1867.CrossRef
139.
Zurück zum Zitat Bilen, T., Canberk, B., & Chowdhury, K. R. (2017). Handover management in software-defined ultra-dense 5G networks. IEEE Network,31(4), 49–55.CrossRef Bilen, T., Canberk, B., & Chowdhury, K. R. (2017). Handover management in software-defined ultra-dense 5G networks. IEEE Network,31(4), 49–55.CrossRef
140.
Zurück zum Zitat Zhang, H., Qiu, Y., Chu, X., Long, K., & Leung, V. C. M. (2017). Fog radio access networks: Mobility a, interference mitigation and resource optimization. IEEE Wireless Communications,24(6), 120–127.CrossRef Zhang, H., Qiu, Y., Chu, X., Long, K., & Leung, V. C. M. (2017). Fog radio access networks: Mobility a, interference mitigation and resource optimization. IEEE Wireless Communications,24(6), 120–127.CrossRef
141.
Zurück zum Zitat Chochlidakis, G., & Friderikos, V. (2017). Mobility aware virtual network embedding. IEEE Transactions on Mobile Computing,16(5), 1343–1356.CrossRef Chochlidakis, G., & Friderikos, V. (2017). Mobility aware virtual network embedding. IEEE Transactions on Mobile Computing,16(5), 1343–1356.CrossRef
142.
Zurück zum Zitat Zhang, H., Liu, N., Chu, X., Long, K., Aghvami, A. H., & Leung, V. C. M. (2017). Network slicing based 5G and future mobile networks: Mobility, resource management, and challenges. IEEE Communications Magazine,55(8), 138–145.CrossRef Zhang, H., Liu, N., Chu, X., Long, K., Aghvami, A. H., & Leung, V. C. M. (2017). Network slicing based 5G and future mobile networks: Mobility, resource management, and challenges. IEEE Communications Magazine,55(8), 138–145.CrossRef
143.
Zurück zum Zitat Niknam, S., Member, S., Natarajan, B., & Member, S. (2018). Interference analysis for finite-area 5G mmWave networks considering blockage effect. IEEE Access,6, 23470–23479.CrossRef Niknam, S., Member, S., Natarajan, B., & Member, S. (2018). Interference analysis for finite-area 5G mmWave networks considering blockage effect. IEEE Access,6, 23470–23479.CrossRef
144.
Zurück zum Zitat Han, K., Cui, Y., Wu, Y., & Huang, K. (2018). The connectivity of millimeter-wave networks in urban environments modeled using random lattices. IEEE Transactions on Wireless Communications,17(5), 3357–3372.CrossRef Han, K., Cui, Y., Wu, Y., & Huang, K. (2018). The connectivity of millimeter-wave networks in urban environments modeled using random lattices. IEEE Transactions on Wireless Communications,17(5), 3357–3372.CrossRef
145.
Zurück zum Zitat Moltchanov, D., Ometov, A., Andreev, S., & Koucheryavy, Y. (2018). Upper bound on capacity of 5G mmWave cellular with multi-connectivity capabilities. Electronics Letters,54(11), 11–12.CrossRef Moltchanov, D., Ometov, A., Andreev, S., & Koucheryavy, Y. (2018). Upper bound on capacity of 5G mmWave cellular with multi-connectivity capabilities. Electronics Letters,54(11), 11–12.CrossRef
146.
Zurück zum Zitat Choi, J. (2014). On the macro diversity with multiple BSs to mitigate blockage in millimeter-wave communications. IEEE Communications Letters,18(9), 1623–1656.CrossRef Choi, J. (2014). On the macro diversity with multiple BSs to mitigate blockage in millimeter-wave communications. IEEE Communications Letters,18(9), 1623–1656.CrossRef
147.
Zurück zum Zitat Gupta, A. K., Andrews, J. G., & Heath, R. W. (2017). Macrodiversity in cellular networks with random blockages. IEEE Transactions on Wireless Communications,17(2), 996–1010.CrossRef Gupta, A. K., Andrews, J. G., & Heath, R. W. (2017). Macrodiversity in cellular networks with random blockages. IEEE Transactions on Wireless Communications,17(2), 996–1010.CrossRef
148.
Zurück zum Zitat Niu, Y., Gao, C., Li, Y., Su, L., & Jin, D. (2016). Exploiting multi-hop relaying to overcome blockage in directional mmwave small cells. Journal of Communications and Networks,18(3), 364–374.CrossRef Niu, Y., Gao, C., Li, Y., Su, L., & Jin, D. (2016). Exploiting multi-hop relaying to overcome blockage in directional mmwave small cells. Journal of Communications and Networks,18(3), 364–374.CrossRef
149.
Zurück zum Zitat Chelli, A. L. I., & Kansanen, K. (2018). On bit error probability and power optimization in multihop millimeter wave relay systems. IEEE Access,6, 3794–3808.CrossRef Chelli, A. L. I., & Kansanen, K. (2018). On bit error probability and power optimization in multihop millimeter wave relay systems. IEEE Access,6, 3794–3808.CrossRef
150.
Zurück zum Zitat Belbase, K., Tellambura, C., & Jiang, H. (2018). Two-way relay selection for millimeter wave networks. IEEE Communications Letters,22(1), 201–204.CrossRef Belbase, K., Tellambura, C., & Jiang, H. (2018). Two-way relay selection for millimeter wave networks. IEEE Communications Letters,22(1), 201–204.CrossRef
151.
Zurück zum Zitat Filippini, I., Member, S., & Sciancalepore, V. (2018). Fast cell discovery in mm-Wave 5G networks with context information. IEEE Transactions on Mobile Computing,17(7), 1538–1552.CrossRef Filippini, I., Member, S., & Sciancalepore, V. (2018). Fast cell discovery in mm-Wave 5G networks with context information. IEEE Transactions on Mobile Computing,17(7), 1538–1552.CrossRef
152.
Zurück zum Zitat Park, J., Kim, S. L., & Zander, J. (2016). Tractable resource management with uplink decoupled millimeter-wave overlay in ultra-dense cellular networks. IEEE Transactions on Wireless Communications,15(6), 4362–4379.CrossRef Park, J., Kim, S. L., & Zander, J. (2016). Tractable resource management with uplink decoupled millimeter-wave overlay in ultra-dense cellular networks. IEEE Transactions on Wireless Communications,15(6), 4362–4379.CrossRef
153.
Zurück zum Zitat Mastrosimone, A., & Panno, D. (2017). Moving network based on mmWave technology: A promising solution for 5G vehicular users. Wireless Networks,24(7), 2409–2426.CrossRef Mastrosimone, A., & Panno, D. (2017). Moving network based on mmWave technology: A promising solution for 5G vehicular users. Wireless Networks,24(7), 2409–2426.CrossRef
154.
Zurück zum Zitat Hetnets, C. C. T., Guo, L., & Cong, S. (2017). Coverage and rate analysis for location-aware cross-tier cooperation in two-tier HetNets. Symmetry,9(8), 1–21.MathSciNetMATH Hetnets, C. C. T., Guo, L., & Cong, S. (2017). Coverage and rate analysis for location-aware cross-tier cooperation in two-tier HetNets. Symmetry,9(8), 1–21.MathSciNetMATH
155.
Zurück zum Zitat Pervez, F., Jaber, M., & Member, S. (2018). Memory-based user-centric backhaul-aware user cell association scheme. IEEE Access,6, 39595–39605.CrossRef Pervez, F., Jaber, M., & Member, S. (2018). Memory-based user-centric backhaul-aware user cell association scheme. IEEE Access,6, 39595–39605.CrossRef
156.
Zurück zum Zitat Luo, Z., LiWang, M., Lin, Z., Huang, L., Du, X., & Guizani, M. (2017). Energy-efficient caching for mobile edge computing in 5G networks. Applied Sciences,7(6), 557.CrossRef Luo, Z., LiWang, M., Lin, Z., Huang, L., Du, X., & Guizani, M. (2017). Energy-efficient caching for mobile edge computing in 5G networks. Applied Sciences,7(6), 557.CrossRef
157.
Zurück zum Zitat Clarke, R. N. (2014). Expanding mobile wireless capacity: The challenges presented by technology and economics. Telecommunications Policy,38(8–9), 693–708.CrossRef Clarke, R. N. (2014). Expanding mobile wireless capacity: The challenges presented by technology and economics. Telecommunications Policy,38(8–9), 693–708.CrossRef
158.
Zurück zum Zitat Cave, M., Doyle, C., & Webb, W. (2007). Essentials of modern spectrum management. Cambridge: Cambridge University Press.CrossRef Cave, M., Doyle, C., & Webb, W. (2007). Essentials of modern spectrum management. Cambridge: Cambridge University Press.CrossRef
159.
Zurück zum Zitat Ye, D. (2016). Heterogeneous cognitive networks: Spectrum sharing with adaptive opportunistic DSMA for collaborative PCP-OFDM system. Wireless Networks,22(1), 351–366.CrossRef Ye, D. (2016). Heterogeneous cognitive networks: Spectrum sharing with adaptive opportunistic DSMA for collaborative PCP-OFDM system. Wireless Networks,22(1), 351–366.CrossRef
160.
Zurück zum Zitat Ghatak, G., Domenico, A. De, & Coupechoux, M. (2018). Coverage analysis and load balancing in HetNets with mmWave multi-RAT small cells. IEEE Transactions on Wireless Communications,17(5), 3154–3169.CrossRef Ghatak, G., Domenico, A. De, & Coupechoux, M. (2018). Coverage analysis and load balancing in HetNets with mmWave multi-RAT small cells. IEEE Transactions on Wireless Communications,17(5), 3154–3169.CrossRef
161.
Zurück zum Zitat Park, J., Andrews, J. G., & Heath, R. W. (2017). Inter-operator base station coordination in spectrum-shared millimeter wave cellular networks. IEEE Transactions on Cognitive Communications and Networking,4(3), 513–528.CrossRef Park, J., Andrews, J. G., & Heath, R. W. (2017). Inter-operator base station coordination in spectrum-shared millimeter wave cellular networks. IEEE Transactions on Cognitive Communications and Networking,4(3), 513–528.CrossRef
162.
Zurück zum Zitat Wang, H., Chen, X., Zaidi, A. A., Luo, J., & Dieudonne, M. (2018). Waveform evaluations subject to hardware impairments for mm-wave mobile communications. Wireless Networks,6, 1–15. Wang, H., Chen, X., Zaidi, A. A., Luo, J., & Dieudonne, M. (2018). Waveform evaluations subject to hardware impairments for mm-wave mobile communications. Wireless Networks,6, 1–15.
163.
Zurück zum Zitat Attiah, M. L., Ismail, M., Nordin, R., & Abdullah, N. F. (2016). Dynamic multi-state ultra-wideband mm-wave frequency selection for 5G communication. In 2015 IEEE 12th Malaysia international conference on communications (MICC 2015) (pp. 219–224). Attiah, M. L., Ismail, M., Nordin, R., & Abdullah, N. F. (2016). Dynamic multi-state ultra-wideband mm-wave frequency selection for 5G communication. In 2015 IEEE 12th Malaysia international conference on communications (MICC 2015) (pp. 219–224).
164.
Zurück zum Zitat Kim, T., Park, J., Seol, J. Y., Jeong, S., Cho, J., & Roh, W. (2013). Tens of Gbps support with mmWave beamforming systems for next generation communications. IEEE Global Communications Conference (GLOBECOM),2013, 3685–3690. Kim, T., Park, J., Seol, J. Y., Jeong, S., Cho, J., & Roh, W. (2013). Tens of Gbps support with mmWave beamforming systems for next generation communications. IEEE Global Communications Conference (GLOBECOM),2013, 3685–3690.
165.
Zurück zum Zitat Rebato, M., Boccardi, F., Mezzavilla, M., Rangan, S., & Zorzi, M. (2017). Hybrid spectrum sharing in mmwave cellular networks. IEEE Transactions on Cognitive Communications and Networking,3(2), 155–168.CrossRef Rebato, M., Boccardi, F., Mezzavilla, M., Rangan, S., & Zorzi, M. (2017). Hybrid spectrum sharing in mmwave cellular networks. IEEE Transactions on Cognitive Communications and Networking,3(2), 155–168.CrossRef
166.
Zurück zum Zitat Bala, I., Bhamrah, M. S., & Singh, G. (2015). Capacity in fading environment based on soft sensing information under spectrum sharing constraints. Wireless Networks,23(2), 519–531.CrossRef Bala, I., Bhamrah, M. S., & Singh, G. (2015). Capacity in fading environment based on soft sensing information under spectrum sharing constraints. Wireless Networks,23(2), 519–531.CrossRef
167.
Zurück zum Zitat Boccardi, F., Shokri-Ghadikolaei, H., Fodor, G., Erkip, E., Fischione, C., Kountouris, M., et al. (2016). Spectrum pooling in MmWave networks: opportunities, challenges, and enablers. IEEE Communications Magazine,54(11), 33–39.CrossRef Boccardi, F., Shokri-Ghadikolaei, H., Fodor, G., Erkip, E., Fischione, C., Kountouris, M., et al. (2016). Spectrum pooling in MmWave networks: opportunities, challenges, and enablers. IEEE Communications Magazine,54(11), 33–39.CrossRef
168.
Zurück zum Zitat Li, G., Irnich, T., & Shi, C. (2014). Coordination context - based spectrum sharing for 5G millimeter—wave networks. In 2014 9th international conference on cognitive radio orient-ed wireless networks and communications (CROWNCOM) (pp. 32–38). Li, G., Irnich, T., & Shi, C. (2014). Coordination context - based spectrum sharing for 5G millimeter—wave networks. In 2014 9th international conference on cognitive radio orient-ed wireless networks and communications (CROWNCOM) (pp. 32–38).
169.
Zurück zum Zitat Rebato, M., Mezzavilla, M., Rangan, S., & Zorzi, M. (2016). Resource sharing in 5G mmWave cellular networks. In 2016 IEEE conference on computer communications work-shops (INFOCOM WKSHPS) (pp. 271–276). Rebato, M., Mezzavilla, M., Rangan, S., & Zorzi, M. (2016). Resource sharing in 5G mmWave cellular networks. In 2016 IEEE conference on computer communications work-shops (INFOCOM WKSHPS) (pp. 271–276).
170.
Zurück zum Zitat Rebato, M., Boccardi, F., Mezzavilla, M., Rangan, S., & Zorzi, M. (2016). Hybrid spectrum access for mmWave networks. In 2016 mediterranean ad hoc networking workshop (Med-Hoc-Net) (pp. 1–7). Rebato, M., Boccardi, F., Mezzavilla, M., Rangan, S., & Zorzi, M. (2016). Hybrid spectrum access for mmWave networks. In 2016 mediterranean ad hoc networking workshop (Med-Hoc-Net) (pp. 1–7).
171.
Zurück zum Zitat Jurdi, R., Gupta, A. K., Andrews, J. G., & Heath, R. W. (2018). Modeling infrastructure sharing in mmwave networks with shared spectrum licenses. IEEE Transactions on Cognitive Communications and Networking,4(2), 328–343.CrossRef Jurdi, R., Gupta, A. K., Andrews, J. G., & Heath, R. W. (2018). Modeling infrastructure sharing in mmwave networks with shared spectrum licenses. IEEE Transactions on Cognitive Communications and Networking,4(2), 328–343.CrossRef
172.
Zurück zum Zitat Fund, F., Shahsavari, S., Panwar, S. S., Erkip, E., & Rangan, S. (2017). Resource sharing among mmWave cellular service providers in a vertically differentiated duopoly. In 2017 IEEE international conference on communications (ICC) (pp. 1–7). Fund, F., Shahsavari, S., Panwar, S. S., Erkip, E., & Rangan, S. (2017). Resource sharing among mmWave cellular service providers in a vertically differentiated duopoly. In 2017 IEEE international conference on communications (ICC) (pp. 1–7).
173.
Zurück zum Zitat Di Renzo, M. (2015). Stochastic geometry modeling and analysis of multi-tier millimeter wave cellular networks. IEEE Transactions on Wireless Communications,14(9), 5038–5057.CrossRef Di Renzo, M. (2015). Stochastic geometry modeling and analysis of multi-tier millimeter wave cellular networks. IEEE Transactions on Wireless Communications,14(9), 5038–5057.CrossRef
174.
Zurück zum Zitat Rebato, M., Mezzavilla, M., Rangan, S., Boccardi, F., & Zorzi, M. (2016). Understanding noise and interference regimes in 5G millimeter-wave cellular networks (pp. 84–88). Rebato, M., Mezzavilla, M., Rangan, S., Boccardi, F., & Zorzi, M. (2016). Understanding noise and interference regimes in 5G millimeter-wave cellular networks (pp. 84–88).
175.
Zurück zum Zitat Attiah, M. L., Isa, A. A. M., Zakaria, Z., Ismail, M., Nordin, R., & Abdullah, N. F. (2018). Coverage probability optimisation by utilizing flexible hybrid mmWave spectrum slicing—sharing access strategy for 5G cellular systems. Journal of Telecommunication, Electronic and Computer Engineering,10(2), 91–98. Attiah, M. L., Isa, A. A. M., Zakaria, Z., Ismail, M., Nordin, R., & Abdullah, N. F. (2018). Coverage probability optimisation by utilizing flexible hybrid mmWave spectrum slicing—sharing access strategy for 5G cellular systems. Journal of Telecommunication, Electronic and Computer Engineering,10(2), 91–98.
176.
Zurück zum Zitat Ullah, U., Dilshad, N., Husain, M., & Umer, T. (2016). Fairness in cognitive radio networks: Models, measurement methods, applications, and future research directions. Journal of Network and Computer Applications,73, 12–26.CrossRef Ullah, U., Dilshad, N., Husain, M., & Umer, T. (2016). Fairness in cognitive radio networks: Models, measurement methods, applications, and future research directions. Journal of Network and Computer Applications,73, 12–26.CrossRef
177.
Zurück zum Zitat Tang, J., Misra, S., & Xue, G. (2008). Joint spectrum allocation and scheduling for fair spectrum sharing in cognitive radio wireless networks. Computer Networks,52(11), 2148–2158.CrossRefMATH Tang, J., Misra, S., & Xue, G. (2008). Joint spectrum allocation and scheduling for fair spectrum sharing in cognitive radio wireless networks. Computer Networks,52(11), 2148–2158.CrossRefMATH
178.
Zurück zum Zitat Cano, L., Capone, A., Carello, G., Cesana, M., & Passacantando, M. (2016). Cooperative infrastructure and spectrum sharing in heterogeneous mobile networks. IEEE Journal on Selected Areas in Communications,34(10), 2617–2629.CrossRef Cano, L., Capone, A., Carello, G., Cesana, M., & Passacantando, M. (2016). Cooperative infrastructure and spectrum sharing in heterogeneous mobile networks. IEEE Journal on Selected Areas in Communications,34(10), 2617–2629.CrossRef
179.
Zurück zum Zitat Merwaday, A., Yuksel, M., Quint, T., Güvenç, I., Saad, W., & Kapucu, N. (2018). Incentivizing spectrum sharing via subsidy regulations for future wireless networks. Computer Networks,135, 132–146.CrossRef Merwaday, A., Yuksel, M., Quint, T., Güvenç, I., Saad, W., & Kapucu, N. (2018). Incentivizing spectrum sharing via subsidy regulations for future wireless networks. Computer Networks,135, 132–146.CrossRef
180.
Zurück zum Zitat Copeland, R., Crespi, N., Copeland, R., & Crespi, N. (2011). Modelling multi-MNO business for MVNOs in their evolution to LTE, VoLTE advanced policy To cite this version: HAL Id: hal-00766676 Evolution to LTE, VoLTE & Advanced Policy. In 2011 15th international conference on intelligence in next generation networks (pp. 295–300). Copeland, R., Crespi, N., Copeland, R., & Crespi, N. (2011). Modelling multi-MNO business for MVNOs in their evolution to LTE, VoLTE advanced policy To cite this version: HAL Id: hal-00766676 Evolution to LTE, VoLTE & Advanced Policy. In 2011 15th international conference on intelligence in next generation networks (pp. 295–300).
181.
Zurück zum Zitat Kapucu, N., Haupt, B., & Yuksel, M. (2018). Spectrum sharing policy: Interoperable communication and information sharing for public safety. Risk, Hazards & Crisis in Public Policy,9(1), 39–59.CrossRef Kapucu, N., Haupt, B., & Yuksel, M. (2018). Spectrum sharing policy: Interoperable communication and information sharing for public safety. Risk, Hazards & Crisis in Public Policy,9(1), 39–59.CrossRef
182.
Zurück zum Zitat Kang, D. H., Sung, K. W., & Zander, J. (2013). High capacity indoor and hotspot wireless systems in shared spectrum: A techno-economic analysis. IEEE Communications Magazine,51(12), 102–109.CrossRef Kang, D. H., Sung, K. W., & Zander, J. (2013). High capacity indoor and hotspot wireless systems in shared spectrum: A techno-economic analysis. IEEE Communications Magazine,51(12), 102–109.CrossRef
183.
Zurück zum Zitat Mustonen, M., Matinmikkoi, M., Roberson, D., & Yrja, S. (2014). Evaluation of recent spectrum sharing models from the regulatory point of view. In 1st international conference on 5G for ubiquitous connectivity (pp. 11–16). Mustonen, M., Matinmikkoi, M., Roberson, D., & Yrja, S. (2014). Evaluation of recent spectrum sharing models from the regulatory point of view. In 1st international conference on 5G for ubiquitous connectivity (pp. 11–16).
184.
Zurück zum Zitat Wang, R. U. I., Hu, H., Member, S., & Yang, X. (2014). Potentials and challenges of C-RAN supporting multi-RATs toward 5G mobile networks. IEEE Access,2, 1187–1195.CrossRef Wang, R. U. I., Hu, H., Member, S., & Yang, X. (2014). Potentials and challenges of C-RAN supporting multi-RATs toward 5G mobile networks. IEEE Access,2, 1187–1195.CrossRef
185.
Zurück zum Zitat Narmanlioglu, O., & Zeydan, E. (2017). New Era in shared cellular networks: Moving into open and virtualized platform. International Journal of Network Management,27(6), 1–19.CrossRef Narmanlioglu, O., & Zeydan, E. (2017). New Era in shared cellular networks: Moving into open and virtualized platform. International Journal of Network Management,27(6), 1–19.CrossRef
186.
Zurück zum Zitat Feng, W., Li, Y., Jin, D., Su, L., & Chen, S. (2016). Millimetre-wave backhaul for 5G networks: Challenges and solutions. Sensors (Switzerland),16(6), 1–17.CrossRef Feng, W., Li, Y., Jin, D., Su, L., & Chen, S. (2016). Millimetre-wave backhaul for 5G networks: Challenges and solutions. Sensors (Switzerland),16(6), 1–17.CrossRef
Metadaten
Titel
A survey of mmWave user association mechanisms and spectrum sharing approaches: an overview, open issues and challenges, future research trends
verfasst von
Mothana L. Attiah
A. A. M. Isa
Zahriladha Zakaria
M. K. Abdulhameed
Mowafak K. Mohsen
Ihab Ali
Publikationsdatum
18.03.2019
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 4/2020
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-019-01976-x

Weitere Artikel der Ausgabe 4/2020

Wireless Networks 4/2020 Zur Ausgabe

Neuer Inhalt