Skip to main content

2025 | OriginalPaper | Buchkapitel

A Survey on Predictive Modelling for Diverse Climate Condition and Heavy Rainfall

verfasst von : R. Logeswaran, S. Anirudh, M. Anousouya Devi

Erschienen in: Innovative Computing and Communications

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Predictive modelling is crucial for understanding and adapting to diverse climate and rainfall patterns, particularly in the context of climate change. In an effort to overcome these issues, the focus of this survey is on the use of machine learning approaches. For many types of sectors including agriculture, disaster prevention, and water resource management, accurate rainfall forecasts are crucial. The introduction of ML approaches is a result of the fact that traditional meteorological models frequently fall short in capturing complicated weather-related processes. In this study, a survey and analysis of the various architectures and ML models, together with their accuracy and performance outcomes, are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Barrera-Animas, A., Oyedele, L., Bilal, M., Akinosho, T., Davila Delgado, M., & Akanbi, L. (2021). Rainfall prediction: A comparative analysis of modern machine learning algorithms for time-series forecasting. Machine Learning with Applications, 7, 100204. https://doi.org/10.1016/j.mlwa.2021.100204 Barrera-Animas, A., Oyedele, L., Bilal, M., Akinosho, T., Davila Delgado, M., & Akanbi, L. (2021). Rainfall prediction: A comparative analysis of modern machine learning algorithms for time-series forecasting. Machine Learning with Applications, 7, 100204. https://​doi.​org/​10.​1016/​j.​mlwa.​2021.​100204
2.
Zurück zum Zitat Srinivas, T. A., Ramasubbareddy, S., Govinda, K., Saxena, A., & Aeluri, P. (2019). Estimating rainfall using machine learning strategies based on weather radar data. International Journal of Communication Systems, 33. https://doi.org/10.1002/dac.3999 Srinivas, T. A., Ramasubbareddy, S., Govinda, K., Saxena, A., & Aeluri, P. (2019). Estimating rainfall using machine learning strategies based on weather radar data. International Journal of Communication Systems, 33. https://​doi.​org/​10.​1002/​dac.​3999
3.
Zurück zum Zitat Simanjuntak, F., Jamaluddin, I., Lin, T.-H., Siahaan, H. A. W., & Chen, Y.-N. (2022). Rainfall forecast using machine learning with high spatiotemporal satellite imagery every 10 minutes. Remote Sensing, 14(23), 5950. https://doi.org/10.3390/rs14235950 Simanjuntak, F., Jamaluddin, I., Lin, T.-H., Siahaan, H. A. W., & Chen, Y.-N. (2022). Rainfall forecast using machine learning with high spatiotemporal satellite imagery every 10 minutes. Remote Sensing, 14(23), 5950. https://​doi.​org/​10.​3390/​rs14235950
5.
6.
Zurück zum Zitat Chen, Z., Lin, H., & Shen, G. (2023). TreeLSTM: A spatiotemporal machine learning model for rainfall-runoff estimation. Journal of Hydrology: Regional Studies, 101474. ISSN: 2214-5818. Chen, Z., Lin, H., & Shen, G. (2023). TreeLSTM: A spatiotemporal machine learning model for rainfall-runoff estimation. Journal of Hydrology: Regional Studies, 101474. ISSN: 2214-5818.
11.
Zurück zum Zitat Mohammed, M., Kolapalli, R., Golla, N., & Maturi, S. (2021). Prediction of rainfall using machine learning techniques. International Journal of Scientific & Technology Research, 10(4), 1–6. Mohammed, M., Kolapalli, R., Golla, N., & Maturi, S. (2021). Prediction of rainfall using machine learning techniques. International Journal of Scientific & Technology Research, 10(4), 1–6.
13.
14.
Zurück zum Zitat Kalu, I., Ndehedehe, C. E., Okwuashi, O., Eyoh, A. E., & Ferreira, V. G. (2023). Identifying impacts of global climate teleconnection patterns on land water storage using machine learning. Journal of Hydrology: Regional Studies, 101346. ISSN: 2214-5818. Kalu, I., Ndehedehe, C. E., Okwuashi, O., Eyoh, A. E., & Ferreira, V. G. (2023). Identifying impacts of global climate teleconnection patterns on land water storage using machine learning. Journal of Hydrology: Regional Studies, 101346. ISSN: 2214-5818.
17.
Zurück zum Zitat Abdul-Kader, H., Abd- El Salam, M., & Mohamed, M. (2020). Hybrid machine learning model for rainfall forecasting. Journal of Intelligent Systems and Internet of Things, 1(1). Abdul-Kader, H., Abd- El Salam, M., & Mohamed, M. (2020). Hybrid machine learning model for rainfall forecasting. Journal of Intelligent Systems and Internet of Things, 1(1).
Metadaten
Titel
A Survey on Predictive Modelling for Diverse Climate Condition and Heavy Rainfall
verfasst von
R. Logeswaran
S. Anirudh
M. Anousouya Devi
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-4152-6_18