Skip to main content
Erschienen in:
Buchtitelbild

2015 | OriginalPaper | Buchkapitel

2. A Synopsis on the State of the Art of NAND Memories

verfasst von : Kirk Prall, Nirmal Ramaswamy, Akira Goda

Erschienen in: Charge-Trapping Non-Volatile Memories

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

NAND memory has become the workhorse nonvolatile memory enabling massive amounts of data to be stored in many electronic devices. There is a high probability that the reader has several devices nearby which contain NAND memory. NAND memory’s combination of simplicity, low cost, high density, low power, and scalability in a solid state device has created a ubiquitous explosion in the NAND market. In 2014, it is estimated that ~6 × 1019 bytes of NAND was shipped (Greg Wong Forward Insights) which is enough to supply a gigabite to every person on the planet (7.2 billion). NAND has crushed less capable memory such as NOR in the market place and is continuing to take market share from hard disk drives pushing them out of the lower density market. As a historical reference a 2013 state of the art 128 Gb 16 nm NAND chip can hold as much data as ~11,000 circa 1986 1.44 MB 90 mm floppy disks which was state of the art at that time (Wikipedia). The impact of NAND on the electronic experience of the consumer has been huge and largely invisible. The accomplishments of the technologists and industry in taking NAND from its invention in 1987 to its dominant position today have been truly amazing. The technology proved to be easily scalable.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aritome S (2013) Study of NAND Flash memory cells. Dissertation. Hiroshima University, Hiroshima Aritome S (2013) Study of NAND Flash memory cells. Dissertation. Hiroshima University, Hiroshima
Zurück zum Zitat Asenov A et al (2001) Increase in the random dopant induced threshold fluctuations and lowering in sub-100 nm MOSFETs due to quantum effects: A 3-D density gradient simulation study. IEEE TRED, New York, NY, p 722 Asenov A et al (2001) Increase in the random dopant induced threshold fluctuations and lowering in sub-100 nm MOSFETs due to quantum effects: A 3-D density gradient simulation study. IEEE TRED, New York, NY, p 722
Zurück zum Zitat Asenov A et al (2003) Intrinsic parameter fluctuations in decananometer MOSFETs introduced by gate line edge roughness. IEEE TRED, New York, NY, p 1254 Asenov A et al (2003) Intrinsic parameter fluctuations in decananometer MOSFETs introduced by gate line edge roughness. IEEE TRED, New York, NY, p 1254
Zurück zum Zitat Bae S et al (2009) The 1/f noise and random telegraph noise characteristics in floating gate NAND Flash memories. IEEE TRED, New York, NY, p 1624 Bae S et al (2009) The 1/f noise and random telegraph noise characteristics in floating gate NAND Flash memories. IEEE TRED, New York, NY, p 1624
Zurück zum Zitat Belgal H et al (2002) A new reliability model for post cycling charge retention of flash memories. IEEE IRPS, p 7 Belgal H et al (2002) A new reliability model for post cycling charge retention of flash memories. IEEE IRPS, p 7
Zurück zum Zitat Brewer J et al (2008) Nonvolatile memory with emphasis on Flash. IEEE Press, Piscataway, NJ Brewer J et al (2008) Nonvolatile memory with emphasis on Flash. IEEE Press, Piscataway, NJ
Zurück zum Zitat Brown W et al (1998) Nonvolatile semiconductor memory technology. IEEE Press, Piscataway, NJ Brown W et al (1998) Nonvolatile semiconductor memory technology. IEEE Press, Piscataway, NJ
Zurück zum Zitat Chang K et al (2012) An advanced embedded flash technology for broad market applications. IEEE ICSICT Chang K et al (2012) An advanced embedded flash technology for broad market applications. IEEE ICSICT
Zurück zum Zitat Compagnoni M et al (2008) Ultimate accuracy for the NAND Flash program algorithm due to the electron injection statistics. IEEE TRED, New York, NY, p 2695 Compagnoni M et al (2008) Ultimate accuracy for the NAND Flash program algorithm due to the electron injection statistics. IEEE TRED, New York, NY, p 2695
Zurück zum Zitat Frohman-Bentchkowsky D (1973) Electrically programmable read only memory array. US Patent, 3,744,036 Frohman-Bentchkowsky D (1973) Electrically programmable read only memory array. US Patent, 3,744,036
Zurück zum Zitat Fujiki J et al (2009) Successful suppression of dielectric relaxation inherent to high-K NAND from both architecture and material points of view. IEEE IEDM Fujiki J et al (2009) Successful suppression of dielectric relaxation inherent to high-K NAND from both architecture and material points of view. IEEE IEDM
Zurück zum Zitat Ghetti A et al (2005) 3D simulation study of gate coupling and gate cross-interference in advanced floating gate non-volatile memories. Solid State Electron 49(11):1805CrossRef Ghetti A et al (2005) 3D simulation study of gate coupling and gate cross-interference in advanced floating gate non-volatile memories. Solid State Electron 49(11):1805CrossRef
Zurück zum Zitat Goda A et al (2012) Scaling directions for 2-D and 3-D NAND cells. IEEE IEDM Goda A et al (2012) Scaling directions for 2-D and 3-D NAND cells. IEEE IEDM
Zurück zum Zitat Harari E (1978) Electrically erasable non-volatile semiconductor memory. US patent 4,115,914 Harari E (1978) Electrically erasable non-volatile semiconductor memory. US patent 4,115,914
Zurück zum Zitat Ho C et al (2008) Improvement of interpoly dielectric characteristics by plasma nitridation and oxidation for future NAND Flash memory. IEEE EDL, New York, NY, p 1199 Ho C et al (2008) Improvement of interpoly dielectric characteristics by plasma nitridation and oxidation for future NAND Flash memory. IEEE EDL, New York, NY, p 1199
Zurück zum Zitat Hou T-H (2007) Design optimization of metal nanocrystal memory, part I: nanocrystal array engineering. IEEE TED 53(12):3095–3102CrossRef Hou T-H (2007) Design optimization of metal nanocrystal memory, part I: nanocrystal array engineering. IEEE TED 53(12):3095–3102CrossRef
Zurück zum Zitat Huff H et al (2005) High dielectric constant materials. Springer, New York, NY, pp 37–38CrossRef Huff H et al (2005) High dielectric constant materials. Springer, New York, NY, pp 37–38CrossRef
Zurück zum Zitat Jung T-S (1996) A 117-mm 2 3.3-V only 128-Mb multilevel NAND Flash memory for mass storage. IEEE JSSC 31(11):1575 Jung T-S (1996) A 117-mm 2 3.3-V only 128-Mb multilevel NAND Flash memory for mass storage. IEEE JSSC 31(11):1575
Zurück zum Zitat Jung S et al (2008) Modeling of Vth shift in NAND Flash-memory cell device considering crosstalk and short channel effects. IEEE TRED, New York, NY, p 1020 Jung S et al (2008) Modeling of Vth shift in NAND Flash-memory cell device considering crosstalk and short channel effects. IEEE TRED, New York, NY, p 1020
Zurück zum Zitat Kahng D et al (1967) A Floating Gate and its Application to Memory Device. Bell Syst Tech J 46:1288CrossRef Kahng D et al (1967) A Floating Gate and its Application to Memory Device. Bell Syst Tech J 46:1288CrossRef
Zurück zum Zitat Kawagoe H et al (1976) Minimum size ROM structure compatible with silicon-gate E/D MOS LSI. IEEE JSSSC. IEEE, New York, NY, p 360 Kawagoe H et al (1976) Minimum size ROM structure compatible with silicon-gate E/D MOS LSI. IEEE JSSSC. IEEE, New York, NY, p 360
Zurück zum Zitat Kim K (2010) Hot chips memory seminar. Samsung, Seoul Kim K (2010) Hot chips memory seminar. Samsung, Seoul
Zurück zum Zitat Kurata H et al (2007) Random telegraph signal in Flash memory: it’s impact of scaling of multilevel flash memory beyond the 90-nm node. IEEE JSSC, New York, NY, p 1362 Kurata H et al (2007) Random telegraph signal in Flash memory: it’s impact of scaling of multilevel flash memory beyond the 90-nm node. IEEE JSSC, New York, NY, p 1362
Zurück zum Zitat Lacaze et al (2014) Non-volatile memories ITSE Wiley London UK Lacaze et al (2014) Non-volatile memories ITSE Wiley London UK
Zurück zum Zitat Lee J (2004) Effects of interface trap generation and annihilation on the data retention characteristics of Flash memory cells. IEEE TDMR, March, p 110 Lee J (2004) Effects of interface trap generation and annihilation on the data retention characteristics of Flash memory cells. IEEE TDMR, March, p 110
Zurück zum Zitat Lee J et al (2002) Effects of floating-gate interference on NAND Flash memory cell operation. IEEE EDL, IEEE, New York, NY, p 264 Lee J et al (2002) Effects of floating-gate interference on NAND Flash memory cell operation. IEEE EDL, IEEE, New York, NY, p 264
Zurück zum Zitat Lee CH et al (2006) Charge trapping memory cell of TANOS (si-oxide-SiN-Al2O3-TaN) structure compatible to conventional NAND Flash memory. IEEE NVSMW, p 31 Lee CH et al (2006) Charge trapping memory cell of TANOS (si-oxide-SiN-Al2O3-TaN) structure compatible to conventional NAND Flash memory. IEEE NVSMW, p 31
Zurück zum Zitat Liu C et al (2009) New program disturb phenomenon induced by background data pattern in MLC NAND Flash memory. IEEE IMW Liu C et al (2009) New program disturb phenomenon induced by background data pattern in MLC NAND Flash memory. IEEE IMW
Zurück zum Zitat Lue H-T et al (2005) BE-SONOS: a bandgap engineered SONOS with excellent performance and reliability. IEDM, 22 Mar 2005 Lue H-T et al (2005) BE-SONOS: a bandgap engineered SONOS with excellent performance and reliability. IEDM, 22 Mar 2005
Zurück zum Zitat Masuoka F et al (1987) New ultra high density EPROM and Flash EEPROM with NAND structure cell. IEDM. IEEE, New York, NY, pp 552–555 Masuoka F et al (1987) New ultra high density EPROM and Flash EEPROM with NAND structure cell. IEDM. IEEE, New York, NY, pp 552–555
Zurück zum Zitat Micheloni R et al (2010) Inside NAND Flash memories. Springer, New York, NYCrossRef Micheloni R et al (2010) Inside NAND Flash memories. Springer, New York, NYCrossRef
Zurück zum Zitat Mielke N et al (2006) Recovery effects in the distributed cycling of flash memories. IEEE IRPS, p 29 Mielke N et al (2006) Recovery effects in the distributed cycling of flash memories. IEEE IRPS, p 29
Zurück zum Zitat Mukerjee S et al (1987) Single transistor electrically programmable memory device and method. US Patent, 4,698,787 Mukerjee S et al (1987) Single transistor electrically programmable memory device and method. US Patent, 4,698,787
Zurück zum Zitat Mukherjee S et al (1985) A single transistor EEPROM cell and its implementation in a 512K CMOS EEPROM, IEDM, p 616 Mukherjee S et al (1985) A single transistor EEPROM cell and its implementation in a 512K CMOS EEPROM, IEDM, p 616
Zurück zum Zitat Muller R et al (1977) An 8192-bit electrically alterable ROM employing a one-transistor cell with floating gate, IEEE JSSC 12(10):507 Muller R et al (1977) An 8192-bit electrically alterable ROM employing a one-transistor cell with floating gate, IEEE JSSC 12(10):507
Zurück zum Zitat Muralidhar R et al (2003) A 6V embedded 90 nm silicon nanocrystal nonvolatile memory. IEEE, IEDM, pp 601–604 Muralidhar R et al (2003) A 6V embedded 90 nm silicon nanocrystal nonvolatile memory. IEEE, IEDM, pp 601–604
Zurück zum Zitat Okuyama Y et al (1998) Monte Carlo simulation of stress-induced leakage current by hopping conduction via multi-traps in oxide. IEEE IEDM, p 905 Okuyama Y et al (1998) Monte Carlo simulation of stress-induced leakage current by hopping conduction via multi-traps in oxide. IEEE IEDM, p 905
Zurück zum Zitat Park Y et al (2006) Highly manufacturable 32Gb multi-level NAND Flash memory with .0098 μm2 cell size using TANOS (Si-Oxide-Al203-TaN) cell technology. IEEE IEDM Park Y et al (2006) Highly manufacturable 32Gb multi-level NAND Flash memory with .0098 μm2 cell size using TANOS (Si-Oxide-Al203-TaN) cell technology. IEEE IEDM
Zurück zum Zitat Prall K (2007) Scaling non-volatile memory below 30 nm. IEEE NVSMW, p 5 Prall K (2007) Scaling non-volatile memory below 30 nm. IEEE NVSMW, p 5
Zurück zum Zitat Prall K (2011) New functional materials and emerging device architectures for nonvolatile memories. MRS Proc 1337 Prall K (2011) New functional materials and emerging device architectures for nonvolatile memories. MRS Proc 1337
Zurück zum Zitat Prall K et al (2010) 25 nm 64 Gb MLC NAND technology and scaling challenges. IEEE IEDM Prall K et al (2010) 25 nm 64 Gb MLC NAND technology and scaling challenges. IEEE IEDM
Zurück zum Zitat Raghunathan S et al (2009) Investigation of ballistic current in scaled floating-gate NAND Flash and a solution. IEEE IEDM, p 819 Raghunathan S et al (2009) Investigation of ballistic current in scaled floating-gate NAND Flash and a solution. IEEE IEDM, p 819
Zurück zum Zitat Ramaswamy N et al (2013) Engineering a planar NAND cell scalable to 20 nm and beyond. IEEE IMW, p 5 Ramaswamy N et al (2013) Engineering a planar NAND cell scalable to 20 nm and beyond. IEEE IMW, p 5
Zurück zum Zitat Ramkumar K et al (2013) A scalable, low voltage, low cost SONOS Memory technology for embedded NVM applications. IEEE IMW, pp 199–202 Ramkumar K et al (2013) A scalable, low voltage, low cost SONOS Memory technology for embedded NVM applications. IEEE IMW, pp 199–202
Zurück zum Zitat Reid D et al (2009) Analysis of threshold voltage distribution due to random dopants: a 100000 – sample 3-D simulation study. IEEE TRED, New York, NY, p 2255 Reid D et al (2009) Analysis of threshold voltage distribution due to random dopants: a 100000 – sample 3-D simulation study. IEEE TRED, New York, NY, p 2255
Zurück zum Zitat Richter D (2013) Flash memories: economic principles of performance, cost and reliability optimization. Springer, New York, NY Richter D (2013) Flash memories: economic principles of performance, cost and reliability optimization. Springer, New York, NY
Zurück zum Zitat Tanaka H et al (2007) Bit cost scalable technology with punch and plug process for ultra high density flash memory. VLSI Symp Tech Dig, pp 14–15 Tanaka H et al (2007) Bit cost scalable technology with punch and plug process for ultra high density flash memory. VLSI Symp Tech Dig, pp 14–15
Zurück zum Zitat Tega N et al (2006) Anomalously large threshold voltage fluctuation by complex random telegraph signal in floating gate Flash memory. IEEE IEDM Tega N et al (2006) Anomalously large threshold voltage fluctuation by complex random telegraph signal in floating gate Flash memory. IEEE IEDM
Zurück zum Zitat Torsi A (2011) A program disturb model and channel leakage current study for sub-20 nm NAND Flash cells. IEEE TRED 58:11CrossRef Torsi A (2011) A program disturb model and channel leakage current study for sub-20 nm NAND Flash cells. IEEE TRED 58:11CrossRef
Zurück zum Zitat Wang H et al (2009) A new read-disturb failure mechanism caused by boosting hot-carrier injection effect in MLC NAND Flash. IEEE IMW Wang H et al (2009) A new read-disturb failure mechanism caused by boosting hot-carrier injection effect in MLC NAND Flash. IEEE IMW
Zurück zum Zitat Waser R (2008) Nanotechnology, vol 3. Wiley, New York, NY Waser R (2008) Nanotechnology, vol 3. Wiley, New York, NY
Zurück zum Zitat Wegener H (1967) The variable threshold transistor, a new electrically alterable non destructive read-only device. IEEE IEDM Wegener H (1967) The variable threshold transistor, a new electrically alterable non destructive read-only device. IEEE IEDM
Zurück zum Zitat White M et al (2004) Characterization of scaled SONOS EEPROM memory devices for space and military systems. IEEE NVMT, p 51–59 White M et al (2004) Characterization of scaled SONOS EEPROM memory devices for space and military systems. IEEE NVMT, p 51–59
Zurück zum Zitat Yaegashi T et al (2009) 20 nm-node planar MONOS cell technology for multi-level NAND Flash memory. VLSI Tech, pp 190–191 Yaegashi T et al (2009) 20 nm-node planar MONOS cell technology for multi-level NAND Flash memory. VLSI Tech, pp 190–191
Metadaten
Titel
A Synopsis on the State of the Art of NAND Memories
verfasst von
Kirk Prall
Nirmal Ramaswamy
Akira Goda
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-15290-5_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.