Skip to main content
Erschienen in: Journal of Computational Electronics 1/2018

22.08.2017

A systematic investigation of the integrated effects of gate underlapping, dual work functionality and hetero gate dielectric for improved performance of CP TFETs

verfasst von: Dharmendra Singh Yadav, Dheeraj Sharma, Sukeshni Tirkey, Varun Bajaj

Erschienen in: Journal of Computational Electronics | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a comparative analysis of the combined effects of gate underlapping and dual work functionality with hetero gate dielectric engineering for a charge plasma tunnel field-effect transistor (CP TFET). Ultrathin nanoscale devices, despite their size and cost advantage, present serious issues, including doping control, random dopant fluctuation and fabrication complexity. Given these concerns, the concept of charge plasma is introduced to avoid the need for conventional doping for the formation of the source and drain regions, which makes the device resistive to process variation. Conduction for negative gate bias (ambipolarity), excess Miller capacitance (gate-to-drain capacitance) and poor RF performance in TFETs are addressed by the use of gate underlapping from the drain side. In addition, enhanced ON-state current is obtained by work function shifting (dual work functionality). This shift in work function can be accomplished by nitrogen doping of the gate electrode for experimental levels [1]. The combined effects of the underlap and dual work function are seen in the device having a single gate dielectric. However, the ON-state current remains lower in the case of \(\mathrm{SiO}_{2}\) as the gate dielectric. Therefore, a hetero gate dielectric \(\mathrm{SiO}_{2}\) on the drain side and \(\mathrm{HfO}_{2}\) on the source side are considered in order to improve the RF parameters and enhance the ON-current concept, respectively. Finally, the combined effects of gate underlap with work function shift and hetero dielectric are analyzed in CP TFETs. The results show that proper underlap length and gate work function provide a significant improvement in device performance. Therefore, optimization of the underlap length and work function is performed to determine the specific work function that provides overall enhancement of DC and analog/RF performance of the device. In addition, optimization of the dual work function gate length is demonstrated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ranade, P., Takeuchi, H., King, T.J., Hu, C.: Work function engineering of molybdenum gate electrodes by nitrogen Implantation” Electrochem. and Solid State Lett. 4(11), G85–G87 (2001) Ranade, P., Takeuchi, H., King, T.J., Hu, C.: Work function engineering of molybdenum gate electrodes by nitrogen Implantation” Electrochem. and Solid State Lett. 4(11), G85–G87 (2001)
2.
Zurück zum Zitat Moore, G.E.: Cramming more components on the integrated circuits. Electronics 38(8), 114–117 (1965) Moore, G.E.: Cramming more components on the integrated circuits. Electronics 38(8), 114–117 (1965)
4.
Zurück zum Zitat Colinge, J.P.: FinFETs and Other Multi-Gate Transistors. Springer, New York (2008)CrossRef Colinge, J.P.: FinFETs and Other Multi-Gate Transistors. Springer, New York (2008)CrossRef
5.
Zurück zum Zitat Forestier, A., Stan, M.R.: Limits of voltage scaling from the low power prespectives. In: Proceedings of 13th Symposium on Integrated Circuits and Systems Design, pp. 365–370 (2000) Forestier, A., Stan, M.R.: Limits of voltage scaling from the low power prespectives. In: Proceedings of 13th Symposium on Integrated Circuits and Systems Design, pp. 365–370 (2000)
6.
Zurück zum Zitat Narendra, S.G.: Challenges and design choices in nanoscale CMOS. ACM J. Emerg. Technol. Comput. Syst. 1(1), 7–49 (2005)CrossRef Narendra, S.G.: Challenges and design choices in nanoscale CMOS. ACM J. Emerg. Technol. Comput. Syst. 1(1), 7–49 (2005)CrossRef
7.
Zurück zum Zitat Wang, Y., et al.: The challenges of physical limitations in Si microelectronics. In: Proceedings of 5th International Conference on solid-State and Integrated Circuit Technology, pp. 25–30 (1998) Wang, Y., et al.: The challenges of physical limitations in Si microelectronics. In: Proceedings of 5th International Conference on solid-State and Integrated Circuit Technology, pp. 25–30 (1998)
8.
Zurück zum Zitat Pop, E., Sinha, S., Goodson,K.E.: Heat generation and trasport in nano-meter scale transistors. In: Proceedings of IEEE, vol. 94(8), pp. 1587–1601 Aug (2006) Pop, E., Sinha, S., Goodson,K.E.: Heat generation and trasport in nano-meter scale transistors. In: Proceedings of IEEE, vol. 94(8), pp. 1587–1601 Aug (2006)
9.
Zurück zum Zitat Hodges, D.A., Jackson, H.G.: Analysis and Design of Digital Integrated Circuits, McGraw-Hill Series in Electrical Engineering: Electronics and Electronic Circuits. McGraw-Hill, New York (1983) Hodges, D.A., Jackson, H.G.: Analysis and Design of Digital Integrated Circuits, McGraw-Hill Series in Electrical Engineering: Electronics and Electronic Circuits. McGraw-Hill, New York (1983)
10.
Zurück zum Zitat Choi, W.Y., Park, B.G., Lee, J.D., Liu, T.J.K.: Tunneling field-effect transistor (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Trans. on Electron Devices 28(8), 743–745 (2007) Choi, W.Y., Park, B.G., Lee, J.D., Liu, T.J.K.: Tunneling field-effect transistor (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Trans. on Electron Devices 28(8), 743–745 (2007)
11.
Zurück zum Zitat Boucart, K., Ionescu, A.M.: Double gate tunnel FET with high-k gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)CrossRef Boucart, K., Ionescu, A.M.: Double gate tunnel FET with high-k gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)CrossRef
12.
Zurück zum Zitat Appenzeller, J., Lin, Y.-M., Knoch, J., Avouris, P.: Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 93(19), 196–805 (2004)CrossRef Appenzeller, J., Lin, Y.-M., Knoch, J., Avouris, P.: Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 93(19), 196–805 (2004)CrossRef
13.
Zurück zum Zitat Appenzeller, J., Lin, Y.-M., Knoch, J., chen, Z., Avouris, P.: Comparing carbon nanotubes transistors-the ideal choice: a novel tunneling device design. IEEE Trans. Electron Devices 52, 2568–2576 (2005)CrossRef Appenzeller, J., Lin, Y.-M., Knoch, J., chen, Z., Avouris, P.: Comparing carbon nanotubes transistors-the ideal choice: a novel tunneling device design. IEEE Trans. Electron Devices 52, 2568–2576 (2005)CrossRef
15.
Zurück zum Zitat Damrongplasit, N., Shin, C., Kim, S.H., Vega, R.A., Liu, T.J.K.: Study of random dopant fluctuation effects in germanium-source tunnel FETs. IEEE Trans. Electron Devices 58(10), 3541–3548 (2011)CrossRef Damrongplasit, N., Shin, C., Kim, S.H., Vega, R.A., Liu, T.J.K.: Study of random dopant fluctuation effects in germanium-source tunnel FETs. IEEE Trans. Electron Devices 58(10), 3541–3548 (2011)CrossRef
16.
Zurück zum Zitat Damrongplasit, N., Kim, S.H., Liu, T.J.K.: Study of random dopant fluctuation induced variability in the raised-Ge-source TFET. IEEE Electron Device Lett. 34(2), 184–186 (2013)CrossRef Damrongplasit, N., Kim, S.H., Liu, T.J.K.: Study of random dopant fluctuation induced variability in the raised-Ge-source TFET. IEEE Electron Device Lett. 34(2), 184–186 (2013)CrossRef
17.
Zurück zum Zitat Mookerjea, S., Datta, S.: Band-gap engineered hot carrier tunnel transistors. In: Proceedings of Device Research Conference University Park, PA, USA, pp. 121–122 (2009) Mookerjea, S., Datta, S.: Band-gap engineered hot carrier tunnel transistors. In: Proceedings of Device Research Conference University Park, PA, USA, pp. 121–122 (2009)
18.
Zurück zum Zitat Lee, M.J., Choi, W.Y.: Effects of device geometry on hetero-gate-dielectric tunneling field-effect transistors. IEEE Electron Device Lett. 33(10), 1459–1461 (2012)CrossRef Lee, M.J., Choi, W.Y.: Effects of device geometry on hetero-gate-dielectric tunneling field-effect transistors. IEEE Electron Device Lett. 33(10), 1459–1461 (2012)CrossRef
19.
Zurück zum Zitat Choi, W.Y., Lee, W.: Hetero-gate-dielectric tunneling field effect transistors. IEEE Trans. Electron Devices 57(9), 2317–2319 (2010)CrossRef Choi, W.Y., Lee, W.: Hetero-gate-dielectric tunneling field effect transistors. IEEE Trans. Electron Devices 57(9), 2317–2319 (2010)CrossRef
20.
Zurück zum Zitat Vijayvargiya, V., Vishvakarma, S.K.: Effect of drain doping profile on double-gate tunnel field-effect transistor and its influence on device RF performance. IEEE Trans. Nano technol. 13(5), 974–981 (2014)CrossRef Vijayvargiya, V., Vishvakarma, S.K.: Effect of drain doping profile on double-gate tunnel field-effect transistor and its influence on device RF performance. IEEE Trans. Nano technol. 13(5), 974–981 (2014)CrossRef
21.
Zurück zum Zitat Saurabh, S., Kumar, M.J.: Novel attributes of dual material gate nanoscale tunel field effect transistor. IEEE Trans. Electron device 58(2), 404–410 (2011) Saurabh, S., Kumar, M.J.: Novel attributes of dual material gate nanoscale tunel field effect transistor. IEEE Trans. Electron device 58(2), 404–410 (2011)
22.
Zurück zum Zitat Abdi, D.B., Kumar, M.J.: Controlling ambipolar current in tunneling FETs using overlapping gate-to-drain. IEEE J. Electron Device Soc. 2(6), 187–190 (2014)CrossRef Abdi, D.B., Kumar, M.J.: Controlling ambipolar current in tunneling FETs using overlapping gate-to-drain. IEEE J. Electron Device Soc. 2(6), 187–190 (2014)CrossRef
23.
Zurück zum Zitat Yadav, D.S., Sharma, D., Raad, B.R., Bajaj, V.: Impactful study of dual work function, underlap and hetero gate dielectric on TFET with different drain doping profile for high frequency performance estimation and optimization. Superlattices Microstruct. 96, 36–46 (2016)CrossRef Yadav, D.S., Sharma, D., Raad, B.R., Bajaj, V.: Impactful study of dual work function, underlap and hetero gate dielectric on TFET with different drain doping profile for high frequency performance estimation and optimization. Superlattices Microstruct. 96, 36–46 (2016)CrossRef
24.
Zurück zum Zitat Raad, B.R., Sharma, D., Kondekar, P., Nigam, K., Yadav, D.S.: Drain work function engineered doping-less charge plasma TFET for ambipolar suppression and RF performance improvement: a proposal, design, and investigation. IEEE Trans. Electron device 63(10), 3950–3957 (2016)CrossRef Raad, B.R., Sharma, D., Kondekar, P., Nigam, K., Yadav, D.S.: Drain work function engineered doping-less charge plasma TFET for ambipolar suppression and RF performance improvement: a proposal, design, and investigation. IEEE Trans. Electron device 63(10), 3950–3957 (2016)CrossRef
25.
Zurück zum Zitat Kumar, M.J., Janardhanan, S.: Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron device 60(10), 3285–3290 (2013)CrossRef Kumar, M.J., Janardhanan, S.: Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron device 60(10), 3285–3290 (2013)CrossRef
26.
Zurück zum Zitat Santa Clara: ATLAS Device Simulation Software. Silvaco Int., Santa Clara, CA, USA (2014) Santa Clara: ATLAS Device Simulation Software. Silvaco Int., Santa Clara, CA, USA (2014)
27.
Zurück zum Zitat Mookerjea, S., Krishnan, R., Datta, S., Narayanan, V.: On enhanced Miller capacitance effect in interband tunnel transistors. IEEE Electron Device Lett. 30(10), 1102–1104 (2009)CrossRef Mookerjea, S., Krishnan, R., Datta, S., Narayanan, V.: On enhanced Miller capacitance effect in interband tunnel transistors. IEEE Electron Device Lett. 30(10), 1102–1104 (2009)CrossRef
Metadaten
Titel
A systematic investigation of the integrated effects of gate underlapping, dual work functionality and hetero gate dielectric for improved performance of CP TFETs
verfasst von
Dharmendra Singh Yadav
Dheeraj Sharma
Sukeshni Tirkey
Varun Bajaj
Publikationsdatum
22.08.2017
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 1/2018
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-017-1045-0

Weitere Artikel der Ausgabe 1/2018

Journal of Computational Electronics 1/2018 Zur Ausgabe

Neuer Inhalt