Skip to main content
Erschienen in: Quantum Information Processing 12/2020

01.11.2020

A systematic method to building Dirac quantum walks coupled to electromagnetic fields

verfasst von: Gareth Jay, Fabrice Debbasch, Jingbo Wang

Erschienen in: Quantum Information Processing | Ausgabe 12/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A quantum walk whose continuous limit coincides with Dirac equation is usually called a Dirac quantum walk (DQW). A new systematic method to build DQWs coupled to electromagnetic (EM) fields is introduced and put to test on several examples of increasing difficulty. It is first used to derive the EM coupling of a 3D walk on the cubic lattice. Recently introduced DQWs on the triangular lattice are then re-derived, showing for the first time that these are the only DQWs that can be defined with spinors living on the vertices of these lattices. As a third example of the method’s effectiveness, a new 3D walk on a parallelepiped lattice is derived. As a fourth, negative example, it is shown that certain lattices like the rhombohedral lattice cannot be used to build DQWs. The effect of changing representation in the Dirac equation is also discussed. Furthermore, we show the simulation of the established DQWs can be efficiently implemented on a quantum computer.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Our third direction across this lattice will still be the same as the x-direction in the square lattice.
 
2
This works similarly for b and d.
 
Literatur
1.
Zurück zum Zitat Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2), 1687 (1993)ADS Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2), 1687 (1993)ADS
2.
Zurück zum Zitat Alderete, C.H., Singh, S., Nguyen, N.H., Zhu, D., Balu, R., Monroe, C., Chandrashekar, C.M., Linke, N.M.: Quantum walks and Dirac cellular automata on a programmable trapped-ion quantum computer. Nat. Commun. 11(1), 1–7 (2020) Alderete, C.H., Singh, S., Nguyen, N.H., Zhu, D., Balu, R., Monroe, C., Chandrashekar, C.M., Linke, N.M.: Quantum walks and Dirac cellular automata on a programmable trapped-ion quantum computer. Nat. Commun. 11(1), 1–7 (2020)
3.
Zurück zum Zitat Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37(1), 210–239 (2007)MathSciNetMATH Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37(1), 210–239 (2007)MathSciNetMATH
4.
Zurück zum Zitat Arnault, P., Debbasch, F.: Landau levels for discrete-time quantum walks in artificial magnetic fields. Physica A Stat. Mech. Appl. 443, 179–191 (2016)ADSMathSciNetMATH Arnault, P., Debbasch, F.: Landau levels for discrete-time quantum walks in artificial magnetic fields. Physica A Stat. Mech. Appl. 443, 179–191 (2016)ADSMathSciNetMATH
5.
Zurück zum Zitat Arnault, P., Debbasch, F.: Quantum walks and discrete gauge theories. Phys. Rev. A 93(5), 052301 (2016)ADSMATH Arnault, P., Debbasch, F.: Quantum walks and discrete gauge theories. Phys. Rev. A 93(5), 052301 (2016)ADSMATH
6.
7.
Zurück zum Zitat Arnault, P., Di Molfetta, G., Brachet, M., Debbasch, F.: Quantum walks and non-abelian discrete gauge theory. Phys. Rev. A 94(1), 012335 (2016)ADSMathSciNet Arnault, P., Di Molfetta, G., Brachet, M., Debbasch, F.: Quantum walks and non-abelian discrete gauge theory. Phys. Rev. A 94(1), 012335 (2016)ADSMathSciNet
8.
Zurück zum Zitat Arrighi, P., Di Molfetta, G., Márquez-Martín, I., Pérez, A.: Dirac equation as a quantum walk over the honeycomb and triangular lattices. Phys. Rev. A 97(6), 062111 (2018)ADSMathSciNet Arrighi, P., Di Molfetta, G., Márquez-Martín, I., Pérez, A.: Dirac equation as a quantum walk over the honeycomb and triangular lattices. Phys. Rev. A 97(6), 062111 (2018)ADSMathSciNet
9.
Zurück zum Zitat Arrighi, P., Di Molfetta, G., Marquez-Martin, I., Perez, A.: From curved spacetime to spacetime-dependent local unitaries over the honeycomb and triangular quantum walks. Sci. Rep. 9(1), 1–10 (2019) Arrighi, P., Di Molfetta, G., Marquez-Martin, I., Perez, A.: From curved spacetime to spacetime-dependent local unitaries over the honeycomb and triangular quantum walks. Sci. Rep. 9(1), 1–10 (2019)
10.
Zurück zum Zitat Arrighi, P., Facchini, S., Forets, M.: Quantum walking in curved spacetime. Quantum Inf. Process. 15(8), 3467–3486 (2016)ADSMathSciNetMATH Arrighi, P., Facchini, S., Forets, M.: Quantum walking in curved spacetime. Quantum Inf. Process. 15(8), 3467–3486 (2016)ADSMathSciNetMATH
11.
Zurück zum Zitat Arrighi, P., Nesme, V., Forets, M.: The Dirac equation as a quantum walk: higher dimensions, observational convergence. J. Phys. A Math. Theor. 47(46), 465302 (2014)ADSMathSciNetMATH Arrighi, P., Nesme, V., Forets, M.: The Dirac equation as a quantum walk: higher dimensions, observational convergence. J. Phys. A Math. Theor. 47(46), 465302 (2014)ADSMathSciNetMATH
12.
Zurück zum Zitat Berry, S.D., Wang, J.B.: Quantum-walk-based search and centrality. Phys. Rev. A 82, 042333 (2010)ADS Berry, S.D., Wang, J.B.: Quantum-walk-based search and centrality. Phys. Rev. A 82, 042333 (2010)ADS
13.
Zurück zum Zitat Berry, S.D., Wang, J.B.: Two-particle quantum walks: entanglement and graph isomorphism testing. Phys. Rev. A 83, 042317 (2011)ADS Berry, S.D., Wang, J.B.: Two-particle quantum walks: entanglement and graph isomorphism testing. Phys. Rev. A 83, 042317 (2011)ADS
14.
Zurück zum Zitat Bialynicki-Birula, I.: Weyl, Dirac, and Maxwell equations on a lattice as unitary cellular automata. Phys. Rev. D 49(12), 6920 (1994)ADSMathSciNet Bialynicki-Birula, I.: Weyl, Dirac, and Maxwell equations on a lattice as unitary cellular automata. Phys. Rev. D 49(12), 6920 (1994)ADSMathSciNet
15.
Zurück zum Zitat Bisio, A., D’Ariano, G.M., Perinotti, P.: Special relativity in a discrete quantum universe. Phys. Rev. A 94(4), 042120 (2016)ADSMathSciNet Bisio, A., D’Ariano, G.M., Perinotti, P.: Special relativity in a discrete quantum universe. Phys. Rev. A 94(4), 042120 (2016)ADSMathSciNet
16.
Zurück zum Zitat Bisio, A., D’Ariano, G.M., Mosco, N., Perinotti, P., Tosini, A.: Solutions of a two-particle interacting quantum walk. Entropy 20(6), 435 (2018)ADSMathSciNet Bisio, A., D’Ariano, G.M., Mosco, N., Perinotti, P., Tosini, A.: Solutions of a two-particle interacting quantum walk. Entropy 20(6), 435 (2018)ADSMathSciNet
17.
Zurück zum Zitat Bisio, A., D’Ariano, G.M., Tosini, A.: Quantum field as a quantum cellular automaton: the Dirac free evolution in one dimension. Ann. Phys. 354, 244–264 (2015)ADSMathSciNetMATH Bisio, A., D’Ariano, G.M., Tosini, A.: Quantum field as a quantum cellular automaton: the Dirac free evolution in one dimension. Ann. Phys. 354, 244–264 (2015)ADSMathSciNetMATH
18.
Zurück zum Zitat Carson, G.R., Loke, T., Wang, J.B.: Entanglement dynamics of two-particle quantum walks. Quantum Inf. Process. 14, 3193 (2015)ADSMathSciNetMATH Carson, G.R., Loke, T., Wang, J.B.: Entanglement dynamics of two-particle quantum walks. Quantum Inf. Process. 14, 3193 (2015)ADSMathSciNetMATH
19.
Zurück zum Zitat Cedzich, C., Geib, T., Werner, A.H., Werner, R.F.: Quantum walks in external gauge fields. J. Math. Phys. 60, 012107 (2019)ADSMathSciNetMATH Cedzich, C., Geib, T., Werner, A.H., Werner, R.F.: Quantum walks in external gauge fields. J. Math. Phys. 60, 012107 (2019)ADSMathSciNetMATH
20.
Zurück zum Zitat Chandrashekar, C.M., Banerjee, S., Srikanth, R.: Relationship between quantum walks and relativistic quantum mechanics. Phys. Rev. A 81(6), 062340 (2010)ADS Chandrashekar, C.M., Banerjee, S., Srikanth, R.: Relationship between quantum walks and relativistic quantum mechanics. Phys. Rev. A 81(6), 062340 (2010)ADS
21.
Zurück zum Zitat Chandrashekar, C.M.: Two-component Dirac-like Hamiltonian for generating quantum walk on one-, two- and three-dimensional lattices. Sci. Rep. 3(1), 1–10 (2013)MathSciNet Chandrashekar, C.M.: Two-component Dirac-like Hamiltonian for generating quantum walk on one-, two- and three-dimensional lattices. Sci. Rep. 3(1), 1–10 (2013)MathSciNet
22.
Zurück zum Zitat Di Molfetta, G., Brachet, M., Debbasch, F.: Quantum walks as massless Dirac fermions in curved space-time. Phys. Rev. A 88(4), 042301 (2013)ADS Di Molfetta, G., Brachet, M., Debbasch, F.: Quantum walks as massless Dirac fermions in curved space-time. Phys. Rev. A 88(4), 042301 (2013)ADS
23.
Zurück zum Zitat Di Molfetta, G., Brachet, M., Debbasch, F.: Quantum walks in artificial electric and gravitational fields. Phys. A Stat. Mech. Appl. 397, 157–168 (2014)MathSciNetMATH Di Molfetta, G., Brachet, M., Debbasch, F.: Quantum walks in artificial electric and gravitational fields. Phys. A Stat. Mech. Appl. 397, 157–168 (2014)MathSciNetMATH
24.
Zurück zum Zitat Douglas, B.L., Wang, J.B.: A classical approach to the graph isomorphism problem using quantum walks. J. Phys. A Math. Theor. 41, 075303 (2008)ADSMathSciNetMATH Douglas, B.L., Wang, J.B.: A classical approach to the graph isomorphism problem using quantum walks. J. Phys. A Math. Theor. 41, 075303 (2008)ADSMathSciNetMATH
25.
Zurück zum Zitat Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill Book Company, New York (1965)MATH Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill Book Company, New York (1965)MATH
26.
Zurück zum Zitat Fuda, T., Funakawa, D., Suzuki, A.: Localization of a multi-dimensional quantum walk with one defect. Quantum Inf. Process. 16(8), 203 (2017)ADSMathSciNetMATH Fuda, T., Funakawa, D., Suzuki, A.: Localization of a multi-dimensional quantum walk with one defect. Quantum Inf. Process. 16(8), 203 (2017)ADSMathSciNetMATH
27.
Zurück zum Zitat Hatifi, M., Di Molfetta, G., Debbasch, F., Brachet, M.: Quantum walk hydrodynamics. Sci. Rep. 9(1), 1–7 (2019) Hatifi, M., Di Molfetta, G., Debbasch, F., Brachet, M.: Quantum walk hydrodynamics. Sci. Rep. 9(1), 1–7 (2019)
28.
Zurück zum Zitat Izaac, J.A., Wang, J.B.: Systematic dimensionality reduction for continuous-time quantum walks of interacting fermions. Phys. Rev. E 96, 032136 (2017)ADS Izaac, J.A., Wang, J.B.: Systematic dimensionality reduction for continuous-time quantum walks of interacting fermions. Phys. Rev. E 96, 032136 (2017)ADS
29.
Zurück zum Zitat Izaac, J.A., Wang, J.B., Abbott, P.C., Ma, X.S.: Quantum centrality testing on directed graphs via PT-symmetric quantum walks. Phys. Rev. A 96, 032305 (2017)ADSMathSciNet Izaac, J.A., Wang, J.B., Abbott, P.C., Ma, X.S.: Quantum centrality testing on directed graphs via PT-symmetric quantum walks. Phys. Rev. A 96, 032305 (2017)ADSMathSciNet
30.
Zurück zum Zitat Jay, G., Debbasch, F., Wang, J.B.: Dirac quantum walks on triangular and honeycomb lattices. Phys. Rev. A 99(3), 032–113 (2019)MathSciNet Jay, G., Debbasch, F., Wang, J.B.: Dirac quantum walks on triangular and honeycomb lattices. Phys. Rev. A 99(3), 032–113 (2019)MathSciNet
31.
Zurück zum Zitat Jordan, S.P., Wocjan, P.: Efficient quantum circuits for arbitrary sparse unitaries. Phys. Rev. A 80, 062301 (2009)ADSMathSciNet Jordan, S.P., Wocjan, P.: Efficient quantum circuits for arbitrary sparse unitaries. Phys. Rev. A 80, 062301 (2009)ADSMathSciNet
32.
Zurück zum Zitat Kumar, N.P., Balu, R., Laflamme, R., Chandrashekar, C.M.: Bounds on the dynamics of periodic quantum walks and emergence of the gapless and gapped Dirac equation. Phys. Rev. A 97(1), 012116 (2018)ADS Kumar, N.P., Balu, R., Laflamme, R., Chandrashekar, C.M.: Bounds on the dynamics of periodic quantum walks and emergence of the gapless and gapped Dirac equation. Phys. Rev. A 97(1), 012116 (2018)ADS
33.
Zurück zum Zitat Kurzyński, P.: Relativistic effects in quantum walks: Klein’s paradox and zitterbewegung. Phys. Lett. A 372(40), 6125–6129 (2008)ADSMathSciNetMATH Kurzyński, P.: Relativistic effects in quantum walks: Klein’s paradox and zitterbewegung. Phys. Lett. A 372(40), 6125–6129 (2008)ADSMathSciNetMATH
34.
Zurück zum Zitat Loke, T., Tang, J.W., Rodriguez, J., Small, M., Wang, J.B.: Comparing classical and quantum pageranks. Quantum Inf. Process. 16, 25 (2019)ADSMATH Loke, T., Tang, J.W., Rodriguez, J., Small, M., Wang, J.B.: Comparing classical and quantum pageranks. Quantum Inf. Process. 16, 25 (2019)ADSMATH
35.
36.
Zurück zum Zitat Maeda, M., Sasaki, H., Segawa, E., Suzuki, A., Suzuki, K.: Weak limit theorem for a nonlinear quantum walk. Quantum Inf. Process. 17(9), 215 (2018)ADSMathSciNetMATH Maeda, M., Sasaki, H., Segawa, E., Suzuki, A., Suzuki, K.: Weak limit theorem for a nonlinear quantum walk. Quantum Inf. Process. 17(9), 215 (2018)ADSMathSciNetMATH
37.
Zurück zum Zitat Maeda, M., Suzuki, A.: Continuous limits of linear and nonlinear quantum walks. Rev. Math. Phys. 32(04), 2050008 (2020)MathSciNetMATH Maeda, M., Suzuki, A.: Continuous limits of linear and nonlinear quantum walks. Rev. Math. Phys. 32(04), 2050008 (2020)MathSciNetMATH
38.
Zurück zum Zitat Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. SIAM J. Comput. 40(1), 142–164 (2011)MathSciNetMATH Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. SIAM J. Comput. 40(1), 142–164 (2011)MathSciNetMATH
39.
Zurück zum Zitat Mallick, A., Chandrashekar, C.M.: Dirac cellular automaton from split-step quantum walk. Sci. Rep. 6, 25779 (2016)ADS Mallick, A., Chandrashekar, C.M.: Dirac cellular automaton from split-step quantum walk. Sci. Rep. 6, 25779 (2016)ADS
40.
Zurück zum Zitat Mallick, A., Mandal, S., Karan, A., Chandrashekar, C.M.: Simulating Dirac hamiltonian in curved space-time by split-step quantum walk. J. Phys. Commun. 3(1), 015012 (2019) Mallick, A., Mandal, S., Karan, A., Chandrashekar, C.M.: Simulating Dirac hamiltonian in curved space-time by split-step quantum walk. J. Phys. Commun. 3(1), 015012 (2019)
41.
Zurück zum Zitat Manouchehri, K., Wang, J.B.: Physical Implementation of Quantum Walks. Springer, Berlin (2014)MATH Manouchehri, K., Wang, J.B.: Physical Implementation of Quantum Walks. Springer, Berlin (2014)MATH
42.
Zurück zum Zitat Márquez-Martín, I., Arnault, P., Di Molfetta, G., Pérez, A.: Electromagnetic lattice gauge invariance in two-dimensional discrete-time quantum walks. Phys. Rev. A 98(3), 032333 (2018)ADS Márquez-Martín, I., Arnault, P., Di Molfetta, G., Pérez, A.: Electromagnetic lattice gauge invariance in two-dimensional discrete-time quantum walks. Phys. Rev. A 98(3), 032333 (2018)ADS
43.
Zurück zum Zitat Marsh, S., Wang, J.B.: A quantum walk-assisted approximate algorithm for bounded NP optimisation problems. Quantum Inf. Process. 18, 61 (2019)ADSMATH Marsh, S., Wang, J.B.: A quantum walk-assisted approximate algorithm for bounded NP optimisation problems. Quantum Inf. Process. 18, 61 (2019)ADSMATH
44.
Zurück zum Zitat Meyer, D.A.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85(5—-6), 551–574 (1996)ADSMathSciNetMATH Meyer, D.A.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85(5—-6), 551–574 (1996)ADSMathSciNetMATH
45.
Zurück zum Zitat Pérez, A.: Asymptotic properties of the Dirac quantum cellular automaton. Phys. Rev. A 93(1), 012328 (2016)ADS Pérez, A.: Asymptotic properties of the Dirac quantum cellular automaton. Phys. Rev. A 93(1), 012328 (2016)ADS
46.
Zurück zum Zitat Qiang, X., Loke, T., Montanaro, A., Aungskunsiri, K., Zhou, X., O’Brien, J.L., Wang, J.B., Matthews, J.C.F.: Efficient quantum walk on a quantum processor. Nat. Commun. 7, 11511 (2016)ADS Qiang, X., Loke, T., Montanaro, A., Aungskunsiri, K., Zhou, X., O’Brien, J.L., Wang, J.B., Matthews, J.C.F.: Efficient quantum walk on a quantum processor. Nat. Commun. 7, 11511 (2016)ADS
47.
Zurück zum Zitat Schweber, S.S.: Feynman and the visualization of space-time processes. Rev. Mod. Phys. 58(2), 449 (1986)ADSMathSciNet Schweber, S.S.: Feynman and the visualization of space-time processes. Rev. Mod. Phys. 58(2), 449 (1986)ADSMathSciNet
48.
Zurück zum Zitat Sett, A., Pan, H., Falloon, P.E., Wang, J.B.: Zero transfer in continuous-time quantum walks. Quantum Inf. Process. 18, 159 (2019)ADSMathSciNet Sett, A., Pan, H., Falloon, P.E., Wang, J.B.: Zero transfer in continuous-time quantum walks. Quantum Inf. Process. 18, 159 (2019)ADSMathSciNet
49.
Zurück zum Zitat Shikano, Y., Wada, T., Horikawa, J.: Nonlinear discrete-time quantum walk and anomalous diffusion. arXiv preprint arXiv:1303.3432, (2013) Shikano, Y., Wada, T., Horikawa, J.: Nonlinear discrete-time quantum walk and anomalous diffusion. arXiv preprint arXiv:​1303.​3432, (2013)
50.
Zurück zum Zitat Singh, S., Balu, R., Laflamme, R., Chandrashekar, C.M.: Accelerated quantum walk, two-particle entanglement generation and localization. J. Phys. Commun. 3(5), 055008 (2019) Singh, S., Balu, R., Laflamme, R., Chandrashekar, C.M.: Accelerated quantum walk, two-particle entanglement generation and localization. J. Phys. Commun. 3(5), 055008 (2019)
51.
Zurück zum Zitat Strauch, F.W.: Relativistic effects and rigorous limits for discrete-and continuous-time quantum walks. J. Math. Phys. 48(8), 082102 (2007)ADSMathSciNetMATH Strauch, F.W.: Relativistic effects and rigorous limits for discrete-and continuous-time quantum walks. J. Math. Phys. 48(8), 082102 (2007)ADSMathSciNetMATH
52.
Zurück zum Zitat Strauch, F.W.: Connecting the discrete-and continuous-time quantum walks. Phys. Rev. A 74(3), 030301 (2006)ADSMathSciNet Strauch, F.W.: Connecting the discrete-and continuous-time quantum walks. Phys. Rev. A 74(3), 030301 (2006)ADSMathSciNet
53.
Zurück zum Zitat Szekeres, P.: A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry. Cambridge University Press, Cambridge (2004)MATH Szekeres, P.: A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry. Cambridge University Press, Cambridge (2004)MATH
54.
Zurück zum Zitat Zhang, W.-W., Goyal, S.K., Simon, C., Sanders, B.C.: Decomposition of split-step quantum walks for simulating majorana modes and edge states. Phys. Rev. A 95(5), 052351 (2017)ADS Zhang, W.-W., Goyal, S.K., Simon, C., Sanders, B.C.: Decomposition of split-step quantum walks for simulating majorana modes and edge states. Phys. Rev. A 95(5), 052351 (2017)ADS
55.
Zurück zum Zitat Zhou, S.S., Wang, J.B.: Efficient quantum circuits for dense circulant and circulant like operators. R. Soc. Open Sci. 4, 160906 (2017)ADSMathSciNet Zhou, S.S., Wang, J.B.: Efficient quantum circuits for dense circulant and circulant like operators. R. Soc. Open Sci. 4, 160906 (2017)ADSMathSciNet
Metadaten
Titel
A systematic method to building Dirac quantum walks coupled to electromagnetic fields
verfasst von
Gareth Jay
Fabrice Debbasch
Jingbo Wang
Publikationsdatum
01.11.2020
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 12/2020
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-020-02933-w

Weitere Artikel der Ausgabe 12/2020

Quantum Information Processing 12/2020 Zur Ausgabe

Neuer Inhalt