Skip to main content
Erschienen in: Theoretical and Computational Fluid Dynamics 3/2020

12.06.2020 | Original Article

A systematic study of blockage in three-dimensional branching networks with an application to model human bronchial tree

verfasst von: Kaustav Pradhan, Abhijit Guha

Erschienen in: Theoretical and Computational Fluid Dynamics | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A major aim of the present study is to understand and thoroughly document the fluid dynamics in three-dimensional branching networks when an intermediate branch is partially or completely obstructed. Altogether, 26 different three-dimensional networks each comprising six generations of branches (involving 63 straight portions and 31 bifurcation modules) are constructed and appropriately meshed to conduct a systematic study of the effects of varying the locations of a blockage of a given relative extent and varying the extent of a blockage at a fixed location. The side-by-side consideration of two branching configurations (in-plane and \(90^{\circ }\) out-of-plane) gives a quantitative assessment of the dependence of flow alteration due to blockage on the three-dimensional arrangement of the same individual branches. A blockage in any branch affects the flow in both downstream and upstream branches. The presence of a blockage can make three-dimensional asymmetric alteration to the flow field, even when the blockage itself is geometrically symmetric. The overall mass flow rate entering the network is found to remain nearly unaltered if a blockage is shifted within the same generation but is progressively reduced if the blockage is shifted to upstream generations. A blockage anywhere in the network increases the degree of mass flow asymmetry \(\delta _{\mathrm{G}n} \) in any generation. The order of magnitude disparity in \(\delta _{\mathrm{G}n} \) between the in-plane and out-of-plane configurations, characteristic of unobstructed networks, can be significantly reduced in the presence of a single blockage. The present three-dimensional computations show that the effects of blockage on the mass flow distribution in a large network are complex, often non-intuitive and sometimes dramatic, and cannot be captured by any simple one-dimensional model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
2.
Zurück zum Zitat Murray, J.J., Guha, A., Bond, A.: Overview of the development of heat exchangers for use in air-breathing propulsion pre-coolers. Acta Astronaut. 41, 723–729 (1997)CrossRef Murray, J.J., Guha, A., Bond, A.: Overview of the development of heat exchangers for use in air-breathing propulsion pre-coolers. Acta Astronaut. 41, 723–729 (1997)CrossRef
3.
4.
Zurück zum Zitat Guha, A., Pradhan, K., Halder, P.K.: Finding order in complexity: a study of the fluid dynamics in a three-dimensional branching network. Phys. Fluids 28(123602), 1–32 (2016) Guha, A., Pradhan, K., Halder, P.K.: Finding order in complexity: a study of the fluid dynamics in a three-dimensional branching network. Phys. Fluids 28(123602), 1–32 (2016)
5.
Zurück zum Zitat Guha, A., Pradhan, K.: Secondary motion in three-dimensional branching networks. Phys. Fluids 29(063602), 1–24 (2017) Guha, A., Pradhan, K.: Secondary motion in three-dimensional branching networks. Phys. Fluids 29(063602), 1–24 (2017)
6.
Zurück zum Zitat Zhao, Y., Lieber, B.B.: Steady inspiratory flow in a model symmetric bifurcation. J. Biomech. Eng. 116, 488–496 (1994)CrossRef Zhao, Y., Lieber, B.B.: Steady inspiratory flow in a model symmetric bifurcation. J. Biomech. Eng. 116, 488–496 (1994)CrossRef
7.
Zurück zum Zitat Zhao, Y., Lieber, B.B.: Steady expiratory flow in a model symmetric bifurcation. J. Biomech. Eng. 116, 318–323 (1994)CrossRef Zhao, Y., Lieber, B.B.: Steady expiratory flow in a model symmetric bifurcation. J. Biomech. Eng. 116, 318–323 (1994)CrossRef
8.
Zurück zum Zitat Zhao, Y., Brunskill, C.T., Lieber, B.B.: Inspiratory and expiratory steady flow analysis in a model symmetrically bifurcating airway. J. Biomech. Eng. 119, 52–58 (1997)CrossRef Zhao, Y., Brunskill, C.T., Lieber, B.B.: Inspiratory and expiratory steady flow analysis in a model symmetrically bifurcating airway. J. Biomech. Eng. 119, 52–58 (1997)CrossRef
9.
Zurück zum Zitat Tadjfar, M., Smith, F.T.: Direct simulations and modelling of basic three-dimensional bifurcating tube flows. J. Fluid Mech. 519, 1–32 (2004)MathSciNetMATHCrossRef Tadjfar, M., Smith, F.T.: Direct simulations and modelling of basic three-dimensional bifurcating tube flows. J. Fluid Mech. 519, 1–32 (2004)MathSciNetMATHCrossRef
10.
Zurück zum Zitat Kang, M.Y., Hwang, J., Lee, J.W.: Effect of geometric variations on pressure loss for a model bifurcation of the human lung airway. J. Biomech. 44, 1196–1199 (2011)CrossRef Kang, M.Y., Hwang, J., Lee, J.W.: Effect of geometric variations on pressure loss for a model bifurcation of the human lung airway. J. Biomech. 44, 1196–1199 (2011)CrossRef
11.
Zurück zum Zitat Pradhan, K., Guha, A.: Fluid dynamics of a bifurcation. Int. J. Heat Fluid Flow 80(108483), 1–29 (2019) Pradhan, K., Guha, A.: Fluid dynamics of a bifurcation. Int. J. Heat Fluid Flow 80(108483), 1–29 (2019)
12.
Zurück zum Zitat Liu, Y., So, R.M.C., Zhang, C.: Modeling the bifurcating flow in a human lung airway. J. Biomech. 35, 465–473 (2002)CrossRef Liu, Y., So, R.M.C., Zhang, C.: Modeling the bifurcating flow in a human lung airway. J. Biomech. 35, 465–473 (2002)CrossRef
13.
Zurück zum Zitat Comer, J.K., Kleinstreuer, C., Zhang, Z.: Flow structures and particle deposition patterns in double-bifurcation airway models. Part 1. Air flow fields. J. Fluid Mech. 435, 25–54 (2001)MATHCrossRef Comer, J.K., Kleinstreuer, C., Zhang, Z.: Flow structures and particle deposition patterns in double-bifurcation airway models. Part 1. Air flow fields. J. Fluid Mech. 435, 25–54 (2001)MATHCrossRef
14.
Zurück zum Zitat Wilquem, F., Degrez, G.: Numerical modeling of steady inspiratory airflow through a three-generation model of the human central airways. J. Biomech. Eng. 119, 59–65 (1997)MATHCrossRef Wilquem, F., Degrez, G.: Numerical modeling of steady inspiratory airflow through a three-generation model of the human central airways. J. Biomech. Eng. 119, 59–65 (1997)MATHCrossRef
15.
Zurück zum Zitat Heistracher, T., Hofmann, W.: Flow and deposition patterns in successive airway bifurcations. Ann. Occup. Hyg. 41, 537–542 (1997) Heistracher, T., Hofmann, W.: Flow and deposition patterns in successive airway bifurcations. Ann. Occup. Hyg. 41, 537–542 (1997)
16.
Zurück zum Zitat Leong, F.Y., Smith, K.A., Wang, C.H.: Secondary flow behavior in a double bifurcation. Phys. Fluids 21, 043601 (2009)MATHCrossRef Leong, F.Y., Smith, K.A., Wang, C.H.: Secondary flow behavior in a double bifurcation. Phys. Fluids 21, 043601 (2009)MATHCrossRef
17.
Zurück zum Zitat Fresconi, F.E., Prasad, A.K.: Secondary velocity fields in the conducting airways of the human lung. J. Biomech. Eng. 129, 722–732 (2007)CrossRef Fresconi, F.E., Prasad, A.K.: Secondary velocity fields in the conducting airways of the human lung. J. Biomech. Eng. 129, 722–732 (2007)CrossRef
18.
Zurück zum Zitat Nowak, N., Kakade, P.P., Annapragada, A.V.: Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs. Ann. Biomed. Eng. 31, 374–390 (2003)CrossRef Nowak, N., Kakade, P.P., Annapragada, A.V.: Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs. Ann. Biomed. Eng. 31, 374–390 (2003)CrossRef
19.
Zurück zum Zitat Kleinstreuer, C., Zhang, Z.: An adjustable triple-bifurcation unit model for air-particle flow simulations in human tracheobronchial airways. J. Biomech. Eng. 131, 021007 (2009)CrossRef Kleinstreuer, C., Zhang, Z.: An adjustable triple-bifurcation unit model for air-particle flow simulations in human tracheobronchial airways. J. Biomech. Eng. 131, 021007 (2009)CrossRef
20.
Zurück zum Zitat Comerford, A., Förster, C., Wall, W.A.: Structured tree impedance outflow boundary conditions for 3D lung simulations. J. Biomech. Eng. 132(8), 081002 (2010)CrossRef Comerford, A., Förster, C., Wall, W.A.: Structured tree impedance outflow boundary conditions for 3D lung simulations. J. Biomech. Eng. 132(8), 081002 (2010)CrossRef
21.
Zurück zum Zitat Ismail, M., Comerford, A., Wall, W.A.: Coupled and reduced dimensional modeling of respiratory mechanics during spontaneous breathing. Int. J. Numer. Methods Biomed. Eng. 29(11), 1285–1305 (2013)MathSciNetCrossRef Ismail, M., Comerford, A., Wall, W.A.: Coupled and reduced dimensional modeling of respiratory mechanics during spontaneous breathing. Int. J. Numer. Methods Biomed. Eng. 29(11), 1285–1305 (2013)MathSciNetCrossRef
22.
Zurück zum Zitat Kannan, R., Chen, Z.J., Singh, N., Przekwas, A., Delvadia, R., Tian, G., Walenga, R.: A quasi-3D wire approach to model pulmonary airflow in human airways. Int. J. Numer. Methods Biomed. Eng. 33(7), e2838 (2017)CrossRef Kannan, R., Chen, Z.J., Singh, N., Przekwas, A., Delvadia, R., Tian, G., Walenga, R.: A quasi-3D wire approach to model pulmonary airflow in human airways. Int. J. Numer. Methods Biomed. Eng. 33(7), e2838 (2017)CrossRef
23.
Zurück zum Zitat Pozin, N., Montesantos, S., Katz, I., Pichelin, M., Vignon-Clementel, I., Grandmont, C.: A tree-parenchyma coupled model for lung ventilation simulation. Int. J. Numer. Methods Biomed. Eng. 33(11), e2873 (2017)MathSciNetCrossRef Pozin, N., Montesantos, S., Katz, I., Pichelin, M., Vignon-Clementel, I., Grandmont, C.: A tree-parenchyma coupled model for lung ventilation simulation. Int. J. Numer. Methods Biomed. Eng. 33(11), e2873 (2017)MathSciNetCrossRef
24.
Zurück zum Zitat Pozin, N., Montesantos, S., Katz, I., Pichelin, M., Grandmont, C., Vignon-Clementel, I.: Calculated ventilation and effort distribution as a measure of respiratory disease and Heliox effectiveness. J. Biomech. 60, 100–109 (2017)CrossRef Pozin, N., Montesantos, S., Katz, I., Pichelin, M., Grandmont, C., Vignon-Clementel, I.: Calculated ventilation and effort distribution as a measure of respiratory disease and Heliox effectiveness. J. Biomech. 60, 100–109 (2017)CrossRef
25.
Zurück zum Zitat Luo, H.Y., Liu, Y.: Modeling the bifurcating flow in a CT-scanned human lung airway. J. Biomech. 41, 2681–2688 (2008)CrossRef Luo, H.Y., Liu, Y.: Modeling the bifurcating flow in a CT-scanned human lung airway. J. Biomech. 41, 2681–2688 (2008)CrossRef
26.
Zurück zum Zitat Pourmehran, O., Gorji, T.B., Gorji-Bandpy, M.: Magnetic drug targeting through a realistic model of human tracheobronchial airways using computational fluid and particle dynamics. Biomech. Model. Mechanobiol. 15, 1355–1374 (2016)CrossRef Pourmehran, O., Gorji, T.B., Gorji-Bandpy, M.: Magnetic drug targeting through a realistic model of human tracheobronchial airways using computational fluid and particle dynamics. Biomech. Model. Mechanobiol. 15, 1355–1374 (2016)CrossRef
27.
Zurück zum Zitat Li, Z., Kleinstreuer, C., Zhang, Z.: Simulation of airflow fields and microparticle deposition in realistic human lung airway models. Part I: airflow patterns. Eur. J. Mech. B Fluids 26, 632–649 (2007)MATHCrossRef Li, Z., Kleinstreuer, C., Zhang, Z.: Simulation of airflow fields and microparticle deposition in realistic human lung airway models. Part I: airflow patterns. Eur. J. Mech. B Fluids 26, 632–649 (2007)MATHCrossRef
28.
Zurück zum Zitat Rahimi-Gorji, M., Pourmehran, O., Gorji-Bandpy, M., Gorji, T.B.: CFD simulation of airflow behavior and particle transport and deposition in different breathing conditions through the realistic model of human airways. J. Mol. Liq. 209, 121–133 (2015)CrossRef Rahimi-Gorji, M., Pourmehran, O., Gorji-Bandpy, M., Gorji, T.B.: CFD simulation of airflow behavior and particle transport and deposition in different breathing conditions through the realistic model of human airways. J. Mol. Liq. 209, 121–133 (2015)CrossRef
29.
Zurück zum Zitat Goodarzi-Ardakani, V., Taeibi-Rahni, M., Salimi, M.R., Ahmadi, G.: Computational simulation of temperature and velocity distribution in human upper respiratory airway during inhalation of hot air. Respir. Physiol. Neurobiol. 223, 49–58 (2016)CrossRef Goodarzi-Ardakani, V., Taeibi-Rahni, M., Salimi, M.R., Ahmadi, G.: Computational simulation of temperature and velocity distribution in human upper respiratory airway during inhalation of hot air. Respir. Physiol. Neurobiol. 223, 49–58 (2016)CrossRef
30.
Zurück zum Zitat Banko, A.J., Coletti, F., Schiavazzi, D., Elkins, C.J., Eaton, J.K.: Three-dimensional inspiratory flow in the upper and central human airways. Exp. Fluids 56(117), 1–12 (2015) Banko, A.J., Coletti, F., Schiavazzi, D., Elkins, C.J., Eaton, J.K.: Three-dimensional inspiratory flow in the upper and central human airways. Exp. Fluids 56(117), 1–12 (2015)
31.
Zurück zum Zitat Yang, X.L., Liu, Y., So, R.M.C., Yang, J.M.: The effect of inlet velocity profile on the bifurcation COPD airway flow. Comput. Biol. Med. 36, 181–194 (2006)CrossRef Yang, X.L., Liu, Y., So, R.M.C., Yang, J.M.: The effect of inlet velocity profile on the bifurcation COPD airway flow. Comput. Biol. Med. 36, 181–194 (2006)CrossRef
32.
Zurück zum Zitat Yang, X.L., Liu, Y., Luo, H.Y.: Respiratory flow in obstructed airways. J. Biomech. 39, 2743–2751 (2006)CrossRef Yang, X.L., Liu, Y., Luo, H.Y.: Respiratory flow in obstructed airways. J. Biomech. 39, 2743–2751 (2006)CrossRef
33.
Zurück zum Zitat Longest, P.W., Vinchurkar, S., Martonen, T.: Transport and deposition of respiratory aerosols in models of childhood asthma. J. Aerosol Sci. 37(10), 1234–1257 (2006)CrossRef Longest, P.W., Vinchurkar, S., Martonen, T.: Transport and deposition of respiratory aerosols in models of childhood asthma. J. Aerosol Sci. 37(10), 1234–1257 (2006)CrossRef
34.
Zurück zum Zitat Farkas, A., Balásházy, I.: Simulation of the effect of local obstructions and blockage on airflow and aerosol deposition in central human airways. J. Aerosol Sci. 38, 865–884 (2007)CrossRef Farkas, A., Balásházy, I.: Simulation of the effect of local obstructions and blockage on airflow and aerosol deposition in central human airways. J. Aerosol Sci. 38, 865–884 (2007)CrossRef
35.
Zurück zum Zitat Soni, B., Thompson, D.: Effects of temporally varying inlet conditions on flow and particle deposition in the small bronchial tubes. Int. J. Numer. Methods Biomed. Eng. 28, 915–936 (2012)MathSciNetCrossRef Soni, B., Thompson, D.: Effects of temporally varying inlet conditions on flow and particle deposition in the small bronchial tubes. Int. J. Numer. Methods Biomed. Eng. 28, 915–936 (2012)MathSciNetCrossRef
36.
Zurück zum Zitat Pradhan, K., Guha, A.: Fluid dynamics of oscillatory flow in three-dimensional branching networks. Phys. Fluids 31(063601), 1–29 (2019) Pradhan, K., Guha, A.: Fluid dynamics of oscillatory flow in three-dimensional branching networks. Phys. Fluids 31(063601), 1–29 (2019)
37.
Zurück zum Zitat SolidWorks, Release: Dassault Systèmes. Solid Works Corporation, Waltham (2010) SolidWorks, Release: Dassault Systèmes. Solid Works Corporation, Waltham (2010)
38.
Zurück zum Zitat ANSYS Academic Research, Release 15.0. ANSYS, Inc., Canonsburg, USA ANSYS Academic Research, Release 15.0. ANSYS, Inc., Canonsburg, USA
39.
Zurück zum Zitat Yin, Y., Choi, J., Hoffman, E.A., Tawhai, M.H., Lin, C.L.: Simulation of pulmonary air flow with a subject-specific boundary condition. J. Biomech. 43, 2159–2163 (2010)CrossRef Yin, Y., Choi, J., Hoffman, E.A., Tawhai, M.H., Lin, C.L.: Simulation of pulmonary air flow with a subject-specific boundary condition. J. Biomech. 43, 2159–2163 (2010)CrossRef
40.
Zurück zum Zitat Barth, T.J., Jespersen, D.C.: The design and application of upwind schemes on unstructured meshes. Technical Report AIAA-89-0366, AIAA 27th Aerospace Sciences Meeting, Reno, Nevada (1989) Barth, T.J., Jespersen, D.C.: The design and application of upwind schemes on unstructured meshes. Technical Report AIAA-89-0366, AIAA 27th Aerospace Sciences Meeting, Reno, Nevada (1989)
41.
Zurück zum Zitat Mei, Y., Guha, A.: Implicit numerical simulation of transonic flow through turbine cascades on unstructured grids. Proc. Inst. Mech. Eng. Part A 219, 35–47 (2005)CrossRef Mei, Y., Guha, A.: Implicit numerical simulation of transonic flow through turbine cascades on unstructured grids. Proc. Inst. Mech. Eng. Part A 219, 35–47 (2005)CrossRef
42.
Zurück zum Zitat Guha, A., Young, J.B.: Time-marching prediction of unsteady condensation phenomena due to supercritical heat addition. In: Turbomachinery: Latest Developments in a Changing Scene, pp. 167–177. Institution of Mechanical Engineers, London, UK (1991). ISBN 0852987617 Guha, A., Young, J.B.: Time-marching prediction of unsteady condensation phenomena due to supercritical heat addition. In: Turbomachinery: Latest Developments in a Changing Scene, pp. 167–177. Institution of Mechanical Engineers, London, UK (1991). ISBN 0852987617
43.
Zurück zum Zitat Guha, A.: Thermal choking due to nonequilibrium condensation. J. Fluids Eng. 116, 599–604 (1994)CrossRef Guha, A.: Thermal choking due to nonequilibrium condensation. J. Fluids Eng. 116, 599–604 (1994)CrossRef
44.
Zurück zum Zitat Roache, P.J.: Quantification of uncertainty in computational fluid dynamics. Ann. Rev. Fluid Mech. 29, 123–160 (1997)MathSciNetCrossRef Roache, P.J.: Quantification of uncertainty in computational fluid dynamics. Ann. Rev. Fluid Mech. 29, 123–160 (1997)MathSciNetCrossRef
45.
Zurück zum Zitat Celik, I.B., Ghia, U., Roache, P.J.: Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng. 130(7), 078001 (2008)CrossRef Celik, I.B., Ghia, U., Roache, P.J.: Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng. 130(7), 078001 (2008)CrossRef
46.
Zurück zum Zitat Guha, A., Sengupta, S.: The fluid dynamics of work transfer in the non-uniform viscous rotating flow within a Tesla disc turbomachine. Phys. Fluids 26(033601), 1–27 (2014) Guha, A., Sengupta, S.: The fluid dynamics of work transfer in the non-uniform viscous rotating flow within a Tesla disc turbomachine. Phys. Fluids 26(033601), 1–27 (2014)
47.
Zurück zum Zitat Wright, D.: Human Physiology and Health. Heinemann Educational, Oxford (2000) Wright, D.: Human Physiology and Health. Heinemann Educational, Oxford (2000)
49.
Zurück zum Zitat Massey, B.: Mechanics of Fluids. 8th edn. Revised by Ward-Smith J., Taylor & Francis, New York, USA (2006) Massey, B.: Mechanics of Fluids. 8th edn. Revised by Ward-Smith J., Taylor & Francis, New York, USA (2006)
Metadaten
Titel
A systematic study of blockage in three-dimensional branching networks with an application to model human bronchial tree
verfasst von
Kaustav Pradhan
Abhijit Guha
Publikationsdatum
12.06.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Theoretical and Computational Fluid Dynamics / Ausgabe 3/2020
Print ISSN: 0935-4964
Elektronische ISSN: 1432-2250
DOI
https://doi.org/10.1007/s00162-020-00523-1

Weitere Artikel der Ausgabe 3/2020

Theoretical and Computational Fluid Dynamics 3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.