This paper presents design and characterization of a novel thermal-calorimetric flow-meter using suspended-cantilever-structure. There is an air gap between the heater and each individual thermistor providing a good thermal isolation. Due to the suspended-structure which consists of three cantilevers, the thermal convection effect is present on both sides of the active area. Also the velocity boundary layer thickness of the cantilever is much less than closed-membrane one. This characteristic enhances the sensitivity of sensor. The simulation results indicate that the average temperature difference between upstream and downstream thermistors are 36.5 and 1.04 K for flow rate of 1 m/s and the worst case of 0.1 m/s respectively. This solution significantly improves the sensitivity compared to the closed-membrane-structures. The maximum temperature difference causes 94 mV at the output of Wheatstone bridge with 3 V of voltage supply. The calculated and simulated results show that the maximum power consumption of sensor is 4.7 mW at the maximum flow velocity of 1 m/s. The operational range of the designed flow meter is from 0 to 1 m/s. The features of the device are analytically evaluated and simulated under various conditions.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Abbaspour-Sani E, Javan D (2008) Analytical study of resistive MEM gas flow meters. Microsyst Technol 14(1):89–94
CrossRef
Baroncini M, Placidi P, Cardinali GC, Scorzoni A (2004) Thermal characterization of a microheater for micromachined gas sensors. Sens Actuators A 115(1):8–14
CrossRef
Bergman TL, Incropera FP, Lavine AS (2011) Fundamentals of heat and mass transfer. Wiley, New York
Bhattacharyya P (2014) Technological journey towards reliable microheater development for mems gas sensors: a review. Device Mater Reliab IEEE Trans 14(2):589–599
CrossRef
Dalola S, Cerimovic S, Kohl F, Beigelbeck R, Schalko J, Ferrari V, Marioli D, Keplinger F, Sauter T (2012) MEMS thermal flow sensor with smart electronic interface circuit. Sens J IEEE 12(12):3318–3328
CrossRef
Guha PK, Syed ZA, Lee CCC, Udrea F, Milne WI, Iwaki T, Covington JA, Gardner JW (2007) Novel design and characterisation of SOI CMOS micro-hotplates for high temperature gas sensors. Sens Actuators B Chem 127(1):260–266
CrossRef
Huang L (2012) City natural gas metering. INTECH Open Access Publisher
Javan D, Abbaspour E (2004) Design and simulation of a micromachined gas flow meter. In: Proceedings of the Iranian Conference on Electrical Engineering, Tehran, May 11–13, pp 1–6
Jiji LM, Jiji LM (2006) Heat convection. Springer, New York
MATH
Kao I, Kumar A, Binder J (2007) Smart MEMS flow sensor: theoretical analysis and experimental characterization. Sens J IEEE 7(5):713–722
CrossRef
Lee CY, Yu HW, Tzu HH, Rong HM, Fu LM, Chou PC (2008) A smart flow sensor for flow direction measurement. Adv Mater Res 47:189–192
CrossRef
Lee CY, Wen CY, Hou HH, Yang RJ, Tsai CH, Fu LM (2009) Design and characterization of MEMS-based flow-rate and flow-direction microsensor. Microfluid Nanofluid 6(3):363–371
CrossRef
Mele L, Santagata F, Iervolino E, Mihailovic M, Rossi T, Tran AT, Schellevis H, Creemer JF, Sarro PM (2012a) A molybdenum MEMS microhotplate for high-temperature operation. Sens Actuators A 188:173–180
CrossRef
Mele L, Santagata F, Iervolino E, Mihailovic M, Rossi T, Tran AT, Schellevis H, Creemer JF, Sarro PM (2012b) A molybdenum MEMS microhotplate for high-temperature operation. Sens Actuators A 188:173–180
CrossRef
Monteiro ML (2012) Thermal dispersion mass flow, measurement handbook
Nguyen SD, Paprotny I, Wright PK, White RM (2014) In-plane capacitive MEMS flow sensor for low-cost metering of flow velocity in natural gas pipelines. In: Micro electro mechanical systems (MEMS), 2014 IEEE 27th International Conference on, pp. 971–974. IEEE, 2014
Privorotskaya NL, King WP (2009) Silicon microcantilever hotplates with high temperature uniformity. Sens Actuators A 152(2):160–167
CrossRef
Roy S, Sarkar CK, Bhattacharyya P (2012) A highly sensitive methane sensor with nickel alloy microheater on micromachined Si substrate. Solid-State Electron 76:84–90
CrossRef
Schena E, Massaroni C, Saccomandi P, Cecchini S (2015) Flow measurement in mechanical ventilation: a review. Med Eng Phys 37(3):257–264
CrossRef
Silvestri S, Schena E (2012) Micromachined flow sensors in biomedical applications. Micromachines 3(2):225–243
CrossRef
Sosna C, Buchner R, Lang W (2010) A temperature compensation circuit for thermal flow sensors operated in constant-temperature-difference mode. Instrum Meas IEEE Trans 59(6):1715–1721
CrossRef
Svedin N, Kälvesten E, Stemme E, Stemme G (1998) A lift-force flow sensor designed for acceleration insensitivity. Sens Actuators A 68(1):263–268
CrossRef
Svedin N, Kälvesten E, Stemme G (2003) A lift force sensor with integrated hot-chips for wide range flow measurements. Sens Actuators A 109(1):120–130
CrossRef
Wang YH, Lee CY, Ma RH, Fu LM (2006) Gas flow sensing with a piezoresistive micro-cantilever. In: Sensors, 2006. 5th IEEE Conference on, pp. 1448–1451. IEEE, 2006
Wang YH, Lee CY, Chiang CM (2007) A MEMS-based air flow sensor with a free-standing micro-cantilever structure. Sensors 7(10):2389–2401
CrossRef
Wang YH, Chen CP, Chang CM, Lin CP, Lin CH, Fu LM, Lee CY (2009) MEMS-based gas flow sensors. Microfluid Nanofluid 6(3):333–346
CrossRef
Xu L, Li T, Gao X, Wang Y (2012) A high heating efficiency two-beam microhotplate for catalytic gas sensors. In: Nano/micro engineered and molecular systems (NEMS), 2012 7th IEEE International Conference on, pp. 65–68. IEEE, 2012
Xu Y, Chiu CW, Jiang F, Lin Q, Tai Y-C (2005) A MEMS multi-sensor chip for gas flow sensing. Sens Actuators A 121(1):253–261
CrossRef
Xu L, Li T, Gao X, Wang Y (2012) A high-performance three-dimensional microheater-based catalytic gas sensor. Electron Device Lett IEEE 33(2):284–286
CrossRef
Yan G, Tang Z, Chan PCH, Sin JKO, Hsing IM, Wang Y (2002) An experimental study on high-temperature metallization for micro-hotplate-based integrated gas sensors. Sens Actuators B Chem 86(1):1–11
CrossRef
Yu B, Gan Z, Cao S, Xu J, Liu S (2008) A micro channel integrated gas flow sensor for high sensitivity. In: Thermal and thermomechanical phenomena in electronic systems, 2008. ITHERM 2008. 11th Intersociety Conference on, pp. 215–220. IEEE, 2008
Zhang Q, Ruan W, Wang H, Zhou Y, Wang Z, Liu L (2010) A self-bended piezoresistive microcantilever flow sensor for low flow rate measurement. Sens Actuators A 158(2):273–279
CrossRef
Über diesen Artikel
Titel
A thermal-calorimetric gas flow meter with improved isolating feature
Autoren:
Yousef Valizadeh Yaghmourali Nima Ahmadi Ebrahim Abbaspour-sani
Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.
Bedingt durch die Altersstruktur vieler Kabelverteilnetze mit der damit verbundenen verminderten Isolationsfestigkeit oder durch fortschreitenden Kabelausbau ist es immer häufiger erforderlich, anstelle der Resonanz-Sternpunktserdung alternative Konzepte für die Sternpunktsbehandlung umzusetzen. Die damit verbundenen Fehlerortungskonzepte bzw. die Erhöhung der Restströme im Erdschlussfall führen jedoch aufgrund der hohen Fehlerströme zu neuen Anforderungen an die Erdungs- und Fehlerstromrückleitungs-Systeme. Lesen Sie hier über die Auswirkung von leitfähigen Strukturen auf die Stromaufteilung sowie die Potentialverhältnisse in urbanen Kabelnetzen bei stromstarken Erdschlüssen. Jetzt gratis downloaden!