Skip to main content
Erschienen in: Meccanica 4/2015

01.04.2015

A thermodynamical formulation for the constitutive modeling of a shape memory alloy with two martensite phases

verfasst von: Raffaella Rizzoni, Sonia Marfia

Erschienen in: Meccanica | Ausgabe 4/2015

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a thermodynamical formulation for the one-dimensional constitutive model for shape memory alloys (SMAs) proposed by the authors in Marfia and Rizzoni (Eur J Mech A Solids 40:166–185, 2013) and able to describe the pseudo-elastic and shape memory effects and the martensite detwinning. The model takes into account the asymmetric behavior in tension and compression and the different elastic properties of the three phases considered for the SMA material: austenite, tensile and compressive martensite. A new formulation based on two specific energy potentials, the Helmholtz and the Gibbs free energies, is proposed. For the two potentials an expression is given, depending on the martensite volume fractions taken as internal variables, and incorporating a mixing energy of the three phases as proposed in Frémond (C R Acad Sci Paris 304:239–244, 1987). An original analysis of the non dissipative and dissipative processes is carried out in the general framework of tension-compression asymmetry and different elastic properties of the three phases; in particular, in the dissipative case the non-negativity of the dissipation is used to restrict evolutive processes. The numerical procedure developed in Marfia and Rizzoni (Eur J Mech A Solids 40:166–185, 2013) is applied to time integrate the evolutive equations of the internal variables. Applications are carried out in order to verify the effectiveness of the proposed model and to compare the numerical results of the model with the experimental results, available in the literature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Sun L, Huang W, Ding Z, Zhao Y, Wang C, Purnawali H, Tang C (2012) Stimulus-responsive shape memory materials: a review. Mater Des 33:577–640CrossRef Sun L, Huang W, Ding Z, Zhao Y, Wang C, Purnawali H, Tang C (2012) Stimulus-responsive shape memory materials: a review. Mater Des 33:577–640CrossRef
2.
Zurück zum Zitat Marfia S, Rizzoni R (2013) One-dimensional constitutive SMA model with two martensite variants: analytical and numerical solutions. Eur J Mech A Solids 40:166–185CrossRefMathSciNet Marfia S, Rizzoni R (2013) One-dimensional constitutive SMA model with two martensite variants: analytical and numerical solutions. Eur J Mech A Solids 40:166–185CrossRefMathSciNet
3.
Zurück zum Zitat Birman V (1997) Review of mechanics of shape memory alloy structures. Appl Mech Rev 50(11):629–645CrossRefADS Birman V (1997) Review of mechanics of shape memory alloy structures. Appl Mech Rev 50(11):629–645CrossRefADS
4.
Zurück zum Zitat Roubíček T (2004) Nonlinear homogenization and its applications to composites, polycrystals and smart materials. In: Models for microstructure evolution in shape memory alloys. Academic Publishers, Dordrecht, pp 269–304 Roubíček T (2004) Nonlinear homogenization and its applications to composites, polycrystals and smart materials. In: Models for microstructure evolution in shape memory alloys. Academic Publishers, Dordrecht, pp 269–304
5.
Zurück zum Zitat Seelecke S, Müller I (2004) Shape memory alloy actuators in smart structures: modeling and simulation. Appl Mech Rev 57(1–6):23–46CrossRefADS Seelecke S, Müller I (2004) Shape memory alloy actuators in smart structures: modeling and simulation. Appl Mech Rev 57(1–6):23–46CrossRefADS
6.
Zurück zum Zitat Patoor E, Lagoudas DC, Entchev PB, Brinson LC, Gao X (2006) Shape memory alloys, part I: general properties and modeling of single crystals. Mech Mater 38(5–6):391–429CrossRef Patoor E, Lagoudas DC, Entchev PB, Brinson LC, Gao X (2006) Shape memory alloys, part I: general properties and modeling of single crystals. Mech Mater 38(5–6):391–429CrossRef
7.
Zurück zum Zitat Lagoudas DC, Entchev PB, Popov P, Patoor E, Brinson LC, Gao X (2006) Shape memory alloys, part II: modeling of polycrystals. Mech Mater 38(5–6):430–462CrossRef Lagoudas DC, Entchev PB, Popov P, Patoor E, Brinson LC, Gao X (2006) Shape memory alloys, part II: modeling of polycrystals. Mech Mater 38(5–6):430–462CrossRef
8.
Zurück zum Zitat Lagoudas DC (2008) Shape memory alloys: modeling and engineering applications. Springer, New York Lagoudas DC (2008) Shape memory alloys: modeling and engineering applications. Springer, New York
9.
Zurück zum Zitat Khandelwal A, Buravalla V (2009) Models for shape memory alloy behavior: an overview of modeling approaches. Int J Struct Changes Solids 1(1):111–148 Khandelwal A, Buravalla V (2009) Models for shape memory alloy behavior: an overview of modeling approaches. Int J Struct Changes Solids 1(1):111–148
10.
Zurück zum Zitat Paiva A, Savi MA (2009) An overwiew of costitutive models for shape memory alloy. Math Probl Eng 1(1):111–148 Paiva A, Savi MA (2009) An overwiew of costitutive models for shape memory alloy. Math Probl Eng 1(1):111–148
11.
Zurück zum Zitat Lexcellent C (2013) Shape-memory alloys handbook. Wiley-ISTE, OaklandCrossRef Lexcellent C (2013) Shape-memory alloys handbook. Wiley-ISTE, OaklandCrossRef
12.
Zurück zum Zitat Bodaghi M, Damanpack A, Aghdam M, Shakeri M (2013) A phenomenological SMA model for combined axial-torsional proportional/non-proportional loading conditions. Mater Sci Eng A 587:12–26CrossRef Bodaghi M, Damanpack A, Aghdam M, Shakeri M (2013) A phenomenological SMA model for combined axial-torsional proportional/non-proportional loading conditions. Mater Sci Eng A 587:12–26CrossRef
13.
Zurück zum Zitat Wang J, Steinmann P, Dai HH (2013) Analytical study on the stress-induced phase or variant transformation in slender shape memory alloy samples. Meccanica 48(4):943–970CrossRefMATHMathSciNet Wang J, Steinmann P, Dai HH (2013) Analytical study on the stress-induced phase or variant transformation in slender shape memory alloy samples. Meccanica 48(4):943–970CrossRefMATHMathSciNet
14.
Zurück zum Zitat Marfia S, Vigliotti A (2014) 1D constitutive models and applications. In: Lecce, Concilio (eds) Shape memory alloy engineering for Aerospace, Structural and Biomedical Applications, 1st edn. Elsevier Marfia S, Vigliotti A (2014) 1D constitutive models and applications. In: Lecce, Concilio (eds) Shape memory alloy engineering for Aerospace, Structural and Biomedical Applications, 1st edn. Elsevier
15.
Zurück zum Zitat Artioli E, Sacco E (2014) 3D constitutive models and applications. In: Lecce, Concilio (eds) Shape memory alloy engineering for Aerospace, Structural and Biomedical Applications, 1st edn. Elsevier Artioli E, Sacco E (2014) 3D constitutive models and applications. In: Lecce, Concilio (eds) Shape memory alloy engineering for Aerospace, Structural and Biomedical Applications, 1st edn. Elsevier
16.
Zurück zum Zitat Tanaka K, Kobayashi S, Sato Y (1986) Thermomechanics of transformation pseudoelasticity and shape memory effect in alloys. Int J Plast 2:59–72CrossRef Tanaka K, Kobayashi S, Sato Y (1986) Thermomechanics of transformation pseudoelasticity and shape memory effect in alloys. Int J Plast 2:59–72CrossRef
17.
Zurück zum Zitat Liang C, Rogers A (1990) One-dimensional thermomechanical constitutive relations for shape memory materials. J Intell Mater Syst Struct 1:207–234CrossRef Liang C, Rogers A (1990) One-dimensional thermomechanical constitutive relations for shape memory materials. J Intell Mater Syst Struct 1:207–234CrossRef
18.
Zurück zum Zitat Brinson L (1993) One dimensional constitutive behaviour of shape memory alloys: thermo-mechanical derivation with non-constant functions and redefined martensite internal variable. J Intell Mater Syst Struct 4:229–242CrossRef Brinson L (1993) One dimensional constitutive behaviour of shape memory alloys: thermo-mechanical derivation with non-constant functions and redefined martensite internal variable. J Intell Mater Syst Struct 4:229–242CrossRef
19.
Zurück zum Zitat Auricchio F, Sacco E (1997) A one-dimensional model for superelastic shape-memory alloys with different elastic properties between austenite and martensite. Int J Non-Linear Mech 32(6):1101–1114CrossRefMATH Auricchio F, Sacco E (1997) A one-dimensional model for superelastic shape-memory alloys with different elastic properties between austenite and martensite. Int J Non-Linear Mech 32(6):1101–1114CrossRefMATH
20.
Zurück zum Zitat Rajagopal KR, Srinivasa AR (1999) On the thermomechanics of shape memory wires. Math Phys 50:459–496MATHMathSciNet Rajagopal KR, Srinivasa AR (1999) On the thermomechanics of shape memory wires. Math Phys 50:459–496MATHMathSciNet
21.
Zurück zum Zitat Savi MA, Paiva A, Baeta-Neves A, Pacheco P (2002) Phenomenological modeling and numerical simulation of shape memory alloys: a thermo-plastic-phase transformation coupled model. J Intell Mater Syst Struct 13:261–273CrossRef Savi MA, Paiva A, Baeta-Neves A, Pacheco P (2002) Phenomenological modeling and numerical simulation of shape memory alloys: a thermo-plastic-phase transformation coupled model. J Intell Mater Syst Struct 13:261–273CrossRef
22.
Zurück zum Zitat Paiva A, Savi MA, Braga AMB, Pacheco PMCL (2005) A constitutive model for shape memory alloys considering tensile compressive asymmetry and plasticity. Int J Solids Struct 42(11–12):3439–3457CrossRefMATH Paiva A, Savi MA, Braga AMB, Pacheco PMCL (2005) A constitutive model for shape memory alloys considering tensile compressive asymmetry and plasticity. Int J Solids Struct 42(11–12):3439–3457CrossRefMATH
23.
Zurück zum Zitat Evangelista V, Marfia S, Sacco E (2009) Phenomenological 3D and 1D consistent models for shape-memory alloy materials. Comput Mech 44:405–421CrossRefMATHMathSciNet Evangelista V, Marfia S, Sacco E (2009) Phenomenological 3D and 1D consistent models for shape-memory alloy materials. Comput Mech 44:405–421CrossRefMATHMathSciNet
24.
Zurück zum Zitat Auricchio F, Sacco E (1999) A temperature-dependent beam for shape-memory alloys: constitutive modelling, finite-element implementation, and numerical simulations. Comp Methods Appl Mech Eng 174:171–190CrossRefMATH Auricchio F, Sacco E (1999) A temperature-dependent beam for shape-memory alloys: constitutive modelling, finite-element implementation, and numerical simulations. Comp Methods Appl Mech Eng 174:171–190CrossRefMATH
25.
Zurück zum Zitat Frémond M (1987) Méchanique des milieux continus: matériaux mémoire ds forme. C R Acad Sci Paris 304:239–244 Frémond M (1987) Méchanique des milieux continus: matériaux mémoire ds forme. C R Acad Sci Paris 304:239–244
26.
Zurück zum Zitat Govindjee S, Kasper EP (1999) Computational aspects of one-dimensional shape memory alloy modeling with phase diagrams. Comput Methods Appl Mech Eng 171:309–326CrossRefADSMATH Govindjee S, Kasper EP (1999) Computational aspects of one-dimensional shape memory alloy modeling with phase diagrams. Comput Methods Appl Mech Eng 171:309–326CrossRefADSMATH
27.
Zurück zum Zitat Nallathambi A, Doraiswamy S, Chandrasekar A, Srinivasan S (2009) A 3-species model for shape memory alloys. Int J Struct Changes Solids Mech Appl 1(1):149–170 Nallathambi A, Doraiswamy S, Chandrasekar A, Srinivasan S (2009) A 3-species model for shape memory alloys. Int J Struct Changes Solids Mech Appl 1(1):149–170
28.
Zurück zum Zitat Daghia F, Fabrizio M, Grandi D (2010) A non isothermal Ginzburg-Landau model for phase transitions in shape memory alloys. Meccanica 45(6):797–807CrossRefMATHMathSciNet Daghia F, Fabrizio M, Grandi D (2010) A non isothermal Ginzburg-Landau model for phase transitions in shape memory alloys. Meccanica 45(6):797–807CrossRefMATHMathSciNet
29.
Zurück zum Zitat Fabrizio M, Pecoraro M (2013) Phase transitions and thermodynamics for the shape memory alloy AuZn. Meccanica 48(7):1695–1700CrossRefMathSciNet Fabrizio M, Pecoraro M (2013) Phase transitions and thermodynamics for the shape memory alloy AuZn. Meccanica 48(7):1695–1700CrossRefMathSciNet
30.
Zurück zum Zitat Grandi D, Stefanelli U (2014) A phenomenological model for microstructure-dependent inelasticity in shape-memory alloys. Meccanica 9:2265–2283CrossRefMathSciNet Grandi D, Stefanelli U (2014) A phenomenological model for microstructure-dependent inelasticity in shape-memory alloys. Meccanica 9:2265–2283CrossRefMathSciNet
31.
Zurück zum Zitat Lexcellent C, Tobushi H (1995) Internal loops in pseudoelastic behaviour of Ti-Ni shape memory alloys: experiment and modelling. Meccanica 30(5):459–466CrossRef Lexcellent C, Tobushi H (1995) Internal loops in pseudoelastic behaviour of Ti-Ni shape memory alloys: experiment and modelling. Meccanica 30(5):459–466CrossRef
32.
Zurück zum Zitat Marfia S, Sacco E, Reddy J (2003) Superelastic and shape memory effects in laminated shape memory alloy beams. AIAA J 41:100–109CrossRefADS Marfia S, Sacco E, Reddy J (2003) Superelastic and shape memory effects in laminated shape memory alloy beams. AIAA J 41:100–109CrossRefADS
33.
Zurück zum Zitat De la Flor S, Urbina C, Ferrando F (2006) Constitutive model of shape memory alloys: theoretical formulation and experimental validation. Mater Sci Eng A 427(12):112–122CrossRef De la Flor S, Urbina C, Ferrando F (2006) Constitutive model of shape memory alloys: theoretical formulation and experimental validation. Mater Sci Eng A 427(12):112–122CrossRef
34.
Zurück zum Zitat Popov P, Lagoudas DC (2007) A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite. Int J Plast 23(10–11):1679–1720CrossRefMATH Popov P, Lagoudas DC (2007) A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite. Int J Plast 23(10–11):1679–1720CrossRefMATH
35.
Zurück zum Zitat Jaber MB, Smaoui H, Terriault P (2008) Finite element analysis of a shape memory alloy three-dimensional beam based on a finite strain description. Smart Mater Struct 17(045):005 Jaber MB, Smaoui H, Terriault P (2008) Finite element analysis of a shape memory alloy three-dimensional beam based on a finite strain description. Smart Mater Struct 17(045):005
36.
Zurück zum Zitat Rizzoni R, Merlin M, Casari D (2013) Shape recovery behaviour of NiTi strips in bending: experiments and modelling. Contin Mech Thermodyn 25(2–4):207–227CrossRefADSMathSciNet Rizzoni R, Merlin M, Casari D (2013) Shape recovery behaviour of NiTi strips in bending: experiments and modelling. Contin Mech Thermodyn 25(2–4):207–227CrossRefADSMathSciNet
37.
Zurück zum Zitat Achenbach M (1989) A model for an alloy with shape memory. Int J Plast 5:371–395CrossRef Achenbach M (1989) A model for an alloy with shape memory. Int J Plast 5:371–395CrossRef
38.
Zurück zum Zitat Chenchiah IV, Sivakumar SM (1999) A two variant thermomechanical model for shape memory alloys. Mech Res Commun 26(3):301–307CrossRefMATH Chenchiah IV, Sivakumar SM (1999) A two variant thermomechanical model for shape memory alloys. Mech Res Commun 26(3):301–307CrossRefMATH
39.
Zurück zum Zitat Suquet P (1982) Plasticité et homogénéisation. Sciences Mathématiques (Mécanique théorique), Paris VI, Thèse d’Etat. Suquet P (1982) Plasticité et homogénéisation. Sciences Mathématiques (Mécanique théorique), Paris VI, Thèse d’Etat.
40.
Zurück zum Zitat Lemaitre J, Chaboche JL (1994) Mechanics of solid materials. Cambridge University Press, Cambridge Lemaitre J, Chaboche JL (1994) Mechanics of solid materials. Cambridge University Press, Cambridge
41.
Zurück zum Zitat Rockafellar RT (1970) Convex analysis. Princeton Press, PrincetonMATH Rockafellar RT (1970) Convex analysis. Princeton Press, PrincetonMATH
42.
Zurück zum Zitat Chiozzi A, Merlin M, Rizzoni R, Tralli A (2012) Experimental comparison for two one-dimensional constitutive models for shape memory alloy wires used in anti-seismic applications. In: ECCOMAS 2012–European congress on computational methods in applied sciences and engineering, e-Book Full Papers, pp 4672–4682. Chiozzi A, Merlin M, Rizzoni R, Tralli A (2012) Experimental comparison for two one-dimensional constitutive models for shape memory alloy wires used in anti-seismic applications. In: ECCOMAS 2012–European congress on computational methods in applied sciences and engineering, e-Book Full Papers, pp 4672–4682.
43.
Zurück zum Zitat Chiozzi A, Merlin M, Rizzoni R, Tralli A Comparative assessment of two constitutive models for superelastic shape-memory wires against experimental measurements. Mech Adv Mater Struct (in press). Chiozzi A, Merlin M, Rizzoni R, Tralli A Comparative assessment of two constitutive models for superelastic shape-memory wires against experimental measurements. Mech Adv Mater Struct (in press).
44.
Zurück zum Zitat Merlin M, Soffritti C, Fortin A (2011) Study of the heat treatment of NiTi shape memory alloy strips for the realisation of adaptive deformable structures. Metallurgia Italiana 103(11–12):17–21 Merlin M, Soffritti C, Fortin A (2011) Study of the heat treatment of NiTi shape memory alloy strips for the realisation of adaptive deformable structures. Metallurgia Italiana 103(11–12):17–21
45.
Zurück zum Zitat Nastasi, A (2012) Caratterizzazione sperimentale di lamine niti a memoria di forma: metodi di misura e di deformazione. Master’s thesis, University of Ferrara. Nastasi, A (2012) Caratterizzazione sperimentale di lamine niti a memoria di forma: metodi di misura e di deformazione. Master’s thesis, University of Ferrara.
Metadaten
Titel
A thermodynamical formulation for the constitutive modeling of a shape memory alloy with two martensite phases
verfasst von
Raffaella Rizzoni
Sonia Marfia
Publikationsdatum
01.04.2015
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 4/2015
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-014-0078-8

Weitere Artikel der Ausgabe 4/2015

Meccanica 4/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.