Skip to main content
Erschienen in: Mechanics of Composite Materials 6/2015

01.01.2015

A Three-Scale Model of Basic Mechanical Properties of Nafion

verfasst von: V. Kafka, D. Vokoun

Erschienen in: Mechanics of Composite Materials | Ausgabe 6/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The mechanical properties of Nafion are explained and modeled on the basis of Kafka’s general mesomechanical model and confronted with experimental results. In this approach, Nafion is looked upon as a composite consisting of three constituents: a crystalline Nafion, amorphous Nafion, and water. Taking into account the degree of hydration, its elastic, elastic-plastic, and hysteretic properties are discussed and modeled. It is shown how the interaction between the three constituents manifests itself on the macroscale.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. Schmidt-Rohr and Q. Chen, “Parallel cylindrical water nanochannels in Nafion fuel-cell membranes,” Nature Mater., 7, 75-83 (2008).CrossRef K. Schmidt-Rohr and Q. Chen, “Parallel cylindrical water nanochannels in Nafion fuel-cell membranes,” Nature Mater., 7, 75-83 (2008).CrossRef
2.
Zurück zum Zitat R. Knake, P. Jacquinot, A. W. E. Hodgson, and P. C. Hauser, “Amperometric sensing in the gas phase,” Analytica Chimica Acta, 549, 1-9, (2005).CrossRef R. Knake, P. Jacquinot, A. W. E. Hodgson, and P. C. Hauser, “Amperometric sensing in the gas phase,” Analytica Chimica Acta, 549, 1-9, (2005).CrossRef
3.
Zurück zum Zitat F. Opekar and K. Stulik, “Electrochemical sensors with polymer electrolytes,” Analytica Chimica Acta, 385, 151-162, (1999).CrossRef F. Opekar and K. Stulik, “Electrochemical sensors with polymer electrolytes,” Analytica Chimica Acta, 385, 151-162, (1999).CrossRef
4.
Zurück zum Zitat V. Mehta and J. S. Cooper, “Review and analysis of PEM fuel cell design and manufacturing,” J. of Power Sources, 114, 32-53, (2003).CrossRef V. Mehta and J. S. Cooper, “Review and analysis of PEM fuel cell design and manufacturing,” J. of Power Sources, 114, 32-53, (2003).CrossRef
5.
Zurück zum Zitat V. Antonuccia, A. Di Blasi, V. Baglioa, R. Ornelasb, F. Matteuccib, J. Ledesma-Garciac, L. G. Arriagac, and A. S. Arico, “High-temperature operation of a composite membrane-based solid polymer electrolyte water electrolyser,” Electrochimica Acta, 53, 7350-7356, (2008).CrossRef V. Antonuccia, A. Di Blasi, V. Baglioa, R. Ornelasb, F. Matteuccib, J. Ledesma-Garciac, L. G. Arriagac, and A. S. Arico, “High-temperature operation of a composite membrane-based solid polymer electrolyte water electrolyser,” Electrochimica Acta, 53, 7350-7356, (2008).CrossRef
6.
Zurück zum Zitat A. A. Gronowski and H. L. Yeager, “Factors which affect the permselectivity of Nafion membranes in chloralkali electrolysis,” J. of the Electrochemical Soc., 138, 2690-2697, (1991).CrossRef A. A. Gronowski and H. L. Yeager, “Factors which affect the permselectivity of Nafion membranes in chloralkali electrolysis,” J. of the Electrochemical Soc., 138, 2690-2697, (1991).CrossRef
7.
Zurück zum Zitat M. Shahinpoor, Y. Bar-Cohen, J. O. Simpson, and J. Smith, “Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles — a review,” Smart Mater. Struct., 7, R15-R30, (1998).CrossRef M. Shahinpoor, Y. Bar-Cohen, J. O. Simpson, and J. Smith, “Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles — a review,” Smart Mater. Struct., 7, R15-R30, (1998).CrossRef
8.
Zurück zum Zitat J. Brufau-Penella, M. Puig-Vidal, P. Giannone, S. Graziani, and S. Strazzeri, “Characterization of the harvesting capabilities of an ionic polymer metal composite device,” Smart Mater. Struc., 17, 015009, (2008).CrossRef J. Brufau-Penella, M. Puig-Vidal, P. Giannone, S. Graziani, and S. Strazzeri, “Characterization of the harvesting capabilities of an ionic polymer metal composite device,” Smart Mater. Struc., 17, 015009, (2008).CrossRef
9.
Zurück zum Zitat Y. Tang, A. M. Karlsson, M. H. Santare, M. Gilbert, S. Cleghorn, and W. B. Johnson, “An experimental investigation of humidity and temperature effects on the mechanical properties of perfluorosulfonic acid membrane,” Mater. Sci. Eng., A, 425, 297-304, (2006).CrossRef Y. Tang, A. M. Karlsson, M. H. Santare, M. Gilbert, S. Cleghorn, and W. B. Johnson, “An experimental investigation of humidity and temperature effects on the mechanical properties of perfluorosulfonic acid membrane,” Mater. Sci. Eng., A, 425, 297-304, (2006).CrossRef
10.
Zurück zum Zitat M. B. Satterfield, P. W. Majsztrik, H. Ota, J. B. Benziger, and A. B. Bocarsly, “Mechanical properties of Nafion and titania/Nafion composite membranes for polymer electrolyte membrane fuel cells,” J. Polym. Sci., Part B, Polymer Physics, 44, 2327-2345, (2006).CrossRef M. B. Satterfield, P. W. Majsztrik, H. Ota, J. B. Benziger, and A. B. Bocarsly, “Mechanical properties of Nafion and titania/Nafion composite membranes for polymer electrolyte membrane fuel cells,” J. Polym. Sci., Part B, Polymer Physics, 44, 2327-2345, (2006).CrossRef
11.
Zurück zum Zitat M. N. Silberstein and M. C. Boyce, “Constitutive modeling of the rate-, temperature-, and hydration-dependent deformation response of Nafion to monotonic and cyclic loading,” J. of Power Sources, 195, 5692-5706, (2010).CrossRef M. N. Silberstein and M. C. Boyce, “Constitutive modeling of the rate-, temperature-, and hydration-dependent deformation response of Nafion to monotonic and cyclic loading,” J. of Power Sources, 195, 5692-5706, (2010).CrossRef
12.
Zurück zum Zitat G. Gebel, “Structural evolution of water-swollen perfluorosulfonated ionomers from dry membrane to solution,” Polymer, 41, 5829-5838, (2000).CrossRef G. Gebel, “Structural evolution of water-swollen perfluorosulfonated ionomers from dry membrane to solution,” Polymer, 41, 5829-5838, (2000).CrossRef
13.
Zurück zum Zitat D. Liu, S. Kyriakides, S. W. Case, J. J. Lesko, Y. Li, and J. E. McGrath, “Tensile behavior of Nafion and sulfonated poly(arylene ether sulfone) copolymer membranes and its morphological correlations,” J. Polym. Sci., Part B, Polymer Physics, 44, 1453-1465, (2006).CrossRef D. Liu, S. Kyriakides, S. W. Case, J. J. Lesko, Y. Li, and J. E. McGrath, “Tensile behavior of Nafion and sulfonated poly(arylene ether sulfone) copolymer membranes and its morphological correlations,” J. Polym. Sci., Part B, Polymer Physics, 44, 1453-1465, (2006).CrossRef
14.
Zurück zum Zitat A. Kusoglu, A. M. Karlsson, and M. H. Santare, “Structure–property relationship in ionomer membranes,” Polymer, 51, 1457-1464, (2010).CrossRef A. Kusoglu, A. M. Karlsson, and M. H. Santare, “Structure–property relationship in ionomer membranes,” Polymer, 51, 1457-1464, (2010).CrossRef
15.
Zurück zum Zitat Y. Qi and Y. H. Lai, “Mesoscale modeling of the influence of morphology on the mechanical properties of proton exchange membranes,” Polymer, 52, 201-210, (2011).CrossRef Y. Qi and Y. H. Lai, “Mesoscale modeling of the influence of morphology on the mechanical properties of proton exchange membranes,” Polymer, 52, 201-210, (2011).CrossRef
16.
Zurück zum Zitat V. Freger, “Hydration of ionomers and Schroeder’s paradox in Nafion,” J. Phys Chem. B, 113, 24-36, (2009).CrossRef V. Freger, “Hydration of ionomers and Schroeder’s paradox in Nafion,” J. Phys Chem. B, 113, 24-36, (2009).CrossRef
17.
Zurück zum Zitat M. N. Silberstein, P. V. Pillai, and M. C. Boyce, “Biaxial elastic-viscoplastic behavior of Nafion membranes,” Polymer 52, 529-539, (2010).CrossRef M. N. Silberstein, P. V. Pillai, and M. C. Boyce, “Biaxial elastic-viscoplastic behavior of Nafion membranes,” Polymer 52, 529-539, (2010).CrossRef
18.
Zurück zum Zitat M. N. Silberstein and M. C. Boyce, “Hygro-thermal mechanical behavior of Nafion during constrained swelling,” J. of Power Sources, 196, 3452-3460, (2011).CrossRef M. N. Silberstein and M. C. Boyce, “Hygro-thermal mechanical behavior of Nafion during constrained swelling,” J. of Power Sources, 196, 3452-3460, (2011).CrossRef
19.
Zurück zum Zitat K. J. Kim and M. Shahinpoor, “Ionic polymer-metal composites: II. Manufacturing techniques,” Smart Mater. Struct., 12, 65-79, (2003).CrossRef K. J. Kim and M. Shahinpoor, “Ionic polymer-metal composites: II. Manufacturing techniques,” Smart Mater. Struct., 12, 65-79, (2003).CrossRef
20.
Zurück zum Zitat R. Tiwari and K. J. Kim, “Disc-shaped ionic polymer metal composites for use in mechano-electrical applications,” Smart Mater. Struct., 19, 065016, (2010).CrossRef R. Tiwari and K. J. Kim, “Disc-shaped ionic polymer metal composites for use in mechano-electrical applications,” Smart Mater. Struct., 19, 065016, (2010).CrossRef
21.
Zurück zum Zitat D. Pugal, K. J. Kim, A. Punning, H. Kasemagi, M. Kruusmaa, and A. Aabloo, “A self-oscillating ionic polymer-metal composite bending actuator,” J. of Appl. Phys., 103, 084908, (2008).CrossRef D. Pugal, K. J. Kim, A. Punning, H. Kasemagi, M. Kruusmaa, and A. Aabloo, “A self-oscillating ionic polymer-metal composite bending actuator,” J. of Appl. Phys., 103, 084908, (2008).CrossRef
22.
Zurück zum Zitat S. Nemat-Nasser, “Micromechanics of actuation of ionic polymer-metal composites”, J. of Applied Physics, 92, 2899-2915, (2002).CrossRef S. Nemat-Nasser, “Micromechanics of actuation of ionic polymer-metal composites”, J. of Applied Physics, 92, 2899-2915, (2002).CrossRef
23.
Zurück zum Zitat S. Nemat–Nasser and S. Zamani, “Modeling of electrochemomechanical response of ionic polymer-metal composites with various solvents,” J. of Appl. Phys., 100, 064310, (2006).CrossRef S. Nemat–Nasser and S. Zamani, “Modeling of electrochemomechanical response of ionic polymer-metal composites with various solvents,” J. of Appl. Phys., 100, 064310, (2006).CrossRef
24.
Zurück zum Zitat G. Alberti, R. Narducci, and M. Sganappa, “Effects of hydrothermal/thermal treatments on the water-uptake of Nafion membranes and relations with changes of conformation, counter-elastic force and tensile modulus of the matrix,” J. of Power Sources, 178, 575-583, (2008).CrossRef G. Alberti, R. Narducci, and M. Sganappa, “Effects of hydrothermal/thermal treatments on the water-uptake of Nafion membranes and relations with changes of conformation, counter-elastic force and tensile modulus of the matrix,” J. of Power Sources, 178, 575-583, (2008).CrossRef
25.
Zurück zum Zitat V. Kafka, Mesomechanical Constitutive Modeling, World Scientific, Singapore (2001). V. Kafka, Mesomechanical Constitutive Modeling, World Scientific, Singapore (2001).
26.
Zurück zum Zitat A. Eisenberg and J. S. Kim, Introduction to Ionomers, Wiley, New York (1998). A. Eisenberg and J. S. Kim, Introduction to Ionomers, Wiley, New York (1998).
Metadaten
Titel
A Three-Scale Model of Basic Mechanical Properties of Nafion
verfasst von
V. Kafka
D. Vokoun
Publikationsdatum
01.01.2015
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 6/2015
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-015-9466-y

Weitere Artikel der Ausgabe 6/2015

Mechanics of Composite Materials 6/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.