Skip to main content
Erschienen in: Calcolo 2/2017

05.08.2016

A time semi-exponentially fitted scheme for chemotaxis-growth models

verfasst von: M. Akhmouch, M. Benzakour Amine

Erschienen in: Calcolo | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, we develop a new linearized implicit finite volume method for chemotaxis-growth models. First, we derive the scheme for a simplified chemotaxis model arising in embryology. The model consists of two coupled nonlinear PDEs: parabolic convection-diffusion equation with a logistic source term for the cell-density, and an elliptic reaction-diffusion equation for the chemical signal. The numerical approximation makes use of a standard finite volume scheme in space with a special treatment for the convection-diffusion fluxes which are approximated by the classical Il’in fluxes. For the time discretization, we introduce our linearized semi-exponentially fitted scheme. The paper gives a comparison between the proposed scheme and different versions of linearized backward Euler schemes. The existence and uniqueness of a numerical solution to the scheme and its convergence to a weak solution of the studied system are proved. In the last section, we present some numerical tests to show the performance of our method. Our numerical approach is then applied to a chemotaxis-growth model describing bacterial pattern formation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aida, M., Tsujikawa, T., Efendiev, M., Yagi, A., Mimura, M.: Lower estimate of the attractor dimension for a chemotaxis growth system. J. Lond. Math. Soc. 74(2), 453–474 (2006)MathSciNetCrossRefMATH Aida, M., Tsujikawa, T., Efendiev, M., Yagi, A., Mimura, M.: Lower estimate of the attractor dimension for a chemotaxis growth system. J. Lond. Math. Soc. 74(2), 453–474 (2006)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Akhmouch, M., Benzakour Amine, M.: Semi-implicit finite volume schemes for a chemotaxis-growth model. Indag. Math. 27(3), 702–720 (2016)MathSciNetCrossRefMATH Akhmouch, M., Benzakour Amine, M.: Semi-implicit finite volume schemes for a chemotaxis-growth model. Indag. Math. 27(3), 702–720 (2016)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Andreianov, B., Bendahmane, M., Saad, M.: Finite volume methods for degenerate chemotaxis model. J. Comput. Appl. Math. 235(14), 4015–4031 (2011)MathSciNetCrossRefMATH Andreianov, B., Bendahmane, M., Saad, M.: Finite volume methods for degenerate chemotaxis model. J. Comput. Appl. Math. 235(14), 4015–4031 (2011)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Bessemoulin-Chatard, M.: A finite volume scheme for convection-diffusion equations with nonlinear diffusion derived from the Scharfetter-Gummel scheme. Numer. Math. 121(4), 637–670 (2012)MathSciNetCrossRefMATH Bessemoulin-Chatard, M.: A finite volume scheme for convection-diffusion equations with nonlinear diffusion derived from the Scharfetter-Gummel scheme. Numer. Math. 121(4), 637–670 (2012)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Bessemoulin-Chatard, M., Chainais-Hillairet, C., Filbet, F.: On discrete functional inequalities for some finite volume schemes. IMA J. Numer. Anal. 35(3), 1125–1149 (2015)MathSciNetCrossRefMATH Bessemoulin-Chatard, M., Chainais-Hillairet, C., Filbet, F.: On discrete functional inequalities for some finite volume schemes. IMA J. Numer. Anal. 35(3), 1125–1149 (2015)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Bessemoulin-Chatard, M., Jüngel, A.: A finite volume scheme for a Keller–Segel model with additional cross-diffusion. IMA J. Numer. Anal. 34(1), 96–122 (2014)MathSciNetCrossRefMATH Bessemoulin-Chatard, M., Jüngel, A.: A finite volume scheme for a Keller–Segel model with additional cross-diffusion. IMA J. Numer. Anal. 34(1), 96–122 (2014)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Blanchet, A., Calvez, V., Carrillo, J.A.: Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller–Segel model. SIAM J. Numer. Anal. 46, 691–721 (2008)MathSciNetCrossRefMATH Blanchet, A., Calvez, V., Carrillo, J.A.: Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller–Segel model. SIAM J. Numer. Anal. 46, 691–721 (2008)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Budd, C.J., Carretero-Gonzlez, R., Russell, R.D.: Precise computations of chemotactic collapse using moving mesh methods. J. Comput. Phys. 202, 463–487 (2005)MathSciNetCrossRefMATH Budd, C.J., Carretero-Gonzlez, R., Russell, R.D.: Precise computations of chemotactic collapse using moving mesh methods. J. Comput. Phys. 202, 463–487 (2005)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Budrene, E.O., Berg, H.C.: Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 376, 49–53 (1995)CrossRef Budrene, E.O., Berg, H.C.: Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 376, 49–53 (1995)CrossRef
10.
Zurück zum Zitat Chainais-Hillairet, C., Liu, J.G., Peng, Y.J.: Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis. Math. Mod. Numer. Anal. 37, 319–338 (2003)MathSciNetCrossRefMATH Chainais-Hillairet, C., Liu, J.G., Peng, Y.J.: Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis. Math. Mod. Numer. Anal. 37, 319–338 (2003)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Chamoun, G., Saad, M., Talhouk, R.: Monotone combined edge finite volume-finite element scheme for anisotropic Keller–Segel model. Numer. Methods Part. Differ. Equ. 30(3), 1030–1065 (2014)MathSciNetCrossRefMATH Chamoun, G., Saad, M., Talhouk, R.: Monotone combined edge finite volume-finite element scheme for anisotropic Keller–Segel model. Numer. Methods Part. Differ. Equ. 30(3), 1030–1065 (2014)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Chaplain, M.A.J., Lolas, G.: Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Netw. Heterog. Media 1, 399–439 (2006)MathSciNetCrossRefMATH Chaplain, M.A.J., Lolas, G.: Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Netw. Heterog. Media 1, 399–439 (2006)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Chertock, A., Kurganov, A.: A positivity preserving central-upwind scheme for chemotaxis and haptotaxis models. Numer. Math. 111, 169–205 (2008)MathSciNetCrossRefMATH Chertock, A., Kurganov, A.: A positivity preserving central-upwind scheme for chemotaxis and haptotaxis models. Numer. Math. 111, 169–205 (2008)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Delgado, M., Morales-Rodrigo, C., Surez, A., Tello, J.I.: On a parabolic-elliptic chemotactic model with coupled boundary conditions. Nonlinear Anal. RWA 11, 3884–3902 (2010)MathSciNetCrossRefMATH Delgado, M., Morales-Rodrigo, C., Surez, A., Tello, J.I.: On a parabolic-elliptic chemotactic model with coupled boundary conditions. Nonlinear Anal. RWA 11, 3884–3902 (2010)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Epshteyn, Y.: Upwind-difference potentials method for Patlak-Keller–Segel Chemotaxis model. J. Sci. Comput. 53, 689–713 (2012)MathSciNetCrossRefMATH Epshteyn, Y.: Upwind-difference potentials method for Patlak-Keller–Segel Chemotaxis model. J. Sci. Comput. 53, 689–713 (2012)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Epshteyn, Y., Izmirlioglu, A.: Fully discrete analysis of a discontinuous finite element method for the Keller–Segel chemotaxis model. J. Sci. Comput. 40, 211–256 (2009)MathSciNetCrossRefMATH Epshteyn, Y., Izmirlioglu, A.: Fully discrete analysis of a discontinuous finite element method for the Keller–Segel chemotaxis model. J. Sci. Comput. 40, 211–256 (2009)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Epshteyn, Y., Kurganov, A.: New interior penalty discontinuous Galerkin methods for the Keller–Segel chemotaxis model. SIAM J. Numer. Anal. 47(1), 386–408 (2008)MathSciNetCrossRefMATH Epshteyn, Y., Kurganov, A.: New interior penalty discontinuous Galerkin methods for the Keller–Segel chemotaxis model. SIAM J. Numer. Anal. 47(1), 386–408 (2008)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Eymard, R., Fuhrmann, J., Gärtner, K.: A finite volume scheme for nonlinear parabolic equations derived from one-dimensional local Dirichlet problems. Numer. Math. 102, 463–495 (2006)MathSciNetCrossRefMATH Eymard, R., Fuhrmann, J., Gärtner, K.: A finite volume scheme for nonlinear parabolic equations derived from one-dimensional local Dirichlet problems. Numer. Math. 102, 463–495 (2006)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: P. G. Ciarlet and J. L. Lions(eds.), Handbook of numerical analysis volume VII, 713-1020, North-Holland (2000) Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: P. G. Ciarlet and J. L. Lions(eds.), Handbook of numerical analysis volume VII, 713-1020, North-Holland (2000)
20.
21.
Zurück zum Zitat Gallouët, T., Latché, J.-C.: Compactness of discrete approximate solutions to parabolic pdes, application to a turbulence model. Commun. Pure Appl. Anal. 11(6), 2371–2391 (2012)MathSciNetCrossRefMATH Gallouët, T., Latché, J.-C.: Compactness of discrete approximate solutions to parabolic pdes, application to a turbulence model. Commun. Pure Appl. Anal. 11(6), 2371–2391 (2012)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Haškovec, J., Schmeiser, C.: Convergence of a stochastic particle approximation for measure solutions of the 2D Keller–Segel system. Comm. Part. Diff. Equ. 36, 940–960 (2011)MathSciNetCrossRefMATH Haškovec, J., Schmeiser, C.: Convergence of a stochastic particle approximation for measure solutions of the 2D Keller–Segel system. Comm. Part. Diff. Equ. 36, 940–960 (2011)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Haškovec, J., Schmeiser, C.: Stochastic particle approximation for measure valued solutions of the 2D Keller–Segel system. J. Stat. Phys. 135(1), 133–151 (2009)MathSciNetCrossRefMATH Haškovec, J., Schmeiser, C.: Stochastic particle approximation for measure valued solutions of the 2D Keller–Segel system. J. Stat. Phys. 135(1), 133–151 (2009)MathSciNetCrossRefMATH
25.
Zurück zum Zitat Horstmann, D.: From 1970 until now: the Keller–Segel model in chemotaxis and its consequences i. Jahresber. Dtsch. Math. Ver. 105, 103–165 (2003)MathSciNetMATH Horstmann, D.: From 1970 until now: the Keller–Segel model in chemotaxis and its consequences i. Jahresber. Dtsch. Math. Ver. 105, 103–165 (2003)MathSciNetMATH
26.
Zurück zum Zitat Horstmann, D.: From 1970 until now: the Keller–Segel model in chemotaxis and its consequences ii. Jahresber. Dtsch. Math. Ver. 106, 51–69 (2004)MathSciNetMATH Horstmann, D.: From 1970 until now: the Keller–Segel model in chemotaxis and its consequences ii. Jahresber. Dtsch. Math. Ver. 106, 51–69 (2004)MathSciNetMATH
27.
Zurück zum Zitat Ibrahim, M., Saad, M.: On the efficacy of a control volume finite element method for the capture of patterns for a volume-filling chemotaxis model. Comput. Math. Appl. 68(9), 1032–1051 (2014)MathSciNetCrossRef Ibrahim, M., Saad, M.: On the efficacy of a control volume finite element method for the capture of patterns for a volume-filling chemotaxis model. Comput. Math. Appl. 68(9), 1032–1051 (2014)MathSciNetCrossRef
28.
Zurück zum Zitat Il’in, A.M.: Differencing scheme for a differential equation with a small parameter affecting the highest derivative. Mat. Zametki 6, 237–248 (1969)MathSciNet Il’in, A.M.: Differencing scheme for a differential equation with a small parameter affecting the highest derivative. Mat. Zametki 6, 237–248 (1969)MathSciNet
29.
Zurück zum Zitat Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)CrossRefMATH Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)CrossRefMATH
30.
Zurück zum Zitat Lazarov, R.D., Mishev, I.D., Vassilevski, P.S.: Finite volume methods for convection-diffusion problems. SIAM J. Numer. Anal. 33(1), 31–55 (1996)MathSciNetCrossRefMATH Lazarov, R.D., Mishev, I.D., Vassilevski, P.S.: Finite volume methods for convection-diffusion problems. SIAM J. Numer. Anal. 33(1), 31–55 (1996)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Maini, P.K., Myerscough, M.R., Winters, K.H., Murray, J.D.: Bifurcating spatially heterogeneous solutions in a chemotaxis model for biological pattern formation. Bull. Math. Biol. 53, 701–719 (1991)CrossRefMATH Maini, P.K., Myerscough, M.R., Winters, K.H., Murray, J.D.: Bifurcating spatially heterogeneous solutions in a chemotaxis model for biological pattern formation. Bull. Math. Biol. 53, 701–719 (1991)CrossRefMATH
32.
Zurück zum Zitat Marrocco, A.: Numerical simulation of chemotactic bacteria aggregation via mixed finite elements. Math. Mod. Num. Anal. 37, 617–630 (2003)MathSciNetCrossRefMATH Marrocco, A.: Numerical simulation of chemotactic bacteria aggregation via mixed finite elements. Math. Mod. Num. Anal. 37, 617–630 (2003)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Murray, J.D.: Mathematical biology, vol. 2, 3rd edn. Springer, Berlin (2003)MATH Murray, J.D.: Mathematical biology, vol. 2, 3rd edn. Springer, Berlin (2003)MATH
34.
Zurück zum Zitat Murray, J.D., Myerscough, M.R.: Pigmentation pattern formation on snakes. J. Theor. Biol. 149, 339–360 (1991)CrossRef Murray, J.D., Myerscough, M.R.: Pigmentation pattern formation on snakes. J. Theor. Biol. 149, 339–360 (1991)CrossRef
35.
Zurück zum Zitat Oster, G.F., Murray, J.D.: Pattern formation models and developmental constraints. J. Expl. Zool. 251, 186–202 (1989)CrossRef Oster, G.F., Murray, J.D.: Pattern formation models and developmental constraints. J. Expl. Zool. 251, 186–202 (1989)CrossRef
36.
Zurück zum Zitat Patankar, S.V.: Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation, Taylor and Francis Group, New York (1990)MATH Patankar, S.V.: Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation, Taylor and Francis Group, New York (1990)MATH
37.
Zurück zum Zitat Saito, N.: Conservative upwind finite-element method for a simplified Keller–Segel system modelling chemotaxis. IMA J. Numer. Anal. 27, 332–365 (2007)MathSciNetCrossRefMATH Saito, N.: Conservative upwind finite-element method for a simplified Keller–Segel system modelling chemotaxis. IMA J. Numer. Anal. 27, 332–365 (2007)MathSciNetCrossRefMATH
38.
Zurück zum Zitat Saito, N.: Error analysis of a conservative finite-element approximation for the Keller–Segel system of chemotaxis. Commun. Pur. Appl. Anal. 11(1), 339–364 (2012)MathSciNetCrossRefMATH Saito, N.: Error analysis of a conservative finite-element approximation for the Keller–Segel system of chemotaxis. Commun. Pur. Appl. Anal. 11(1), 339–364 (2012)MathSciNetCrossRefMATH
39.
Zurück zum Zitat Saito, N., Suzuki, T.: Notes on finite difference schemes to a parabolic-elliptic system modelling chemotaxis. Appl. Math. Comput. 171(1), 72–90 (2005)MathSciNetMATH Saito, N., Suzuki, T.: Notes on finite difference schemes to a parabolic-elliptic system modelling chemotaxis. Appl. Math. Comput. 171(1), 72–90 (2005)MathSciNetMATH
40.
Zurück zum Zitat Scharfetter, D.L., Gummel, H.K.: Large signal analysis of a silicon read diode. IEEE Trans. Elec. Dev. 16, 64–77 (1969)CrossRef Scharfetter, D.L., Gummel, H.K.: Large signal analysis of a silicon read diode. IEEE Trans. Elec. Dev. 16, 64–77 (1969)CrossRef
41.
Zurück zum Zitat Strehl, R., Sokolov, A., Kuzmin, D., Horstmann, D., Turek, S.: A positivity-preserving finite element method for chemotaxis problems in 3D. J. Comput. Appl. Math. 239, 290–303 (2013)MathSciNetCrossRefMATH Strehl, R., Sokolov, A., Kuzmin, D., Horstmann, D., Turek, S.: A positivity-preserving finite element method for chemotaxis problems in 3D. J. Comput. Appl. Math. 239, 290–303 (2013)MathSciNetCrossRefMATH
42.
Zurück zum Zitat Strehl, R., Sokolov, A., Kuzmin, D., Turek, S.: A flux-corrected finite element method for chemotaxis problems. Comput. Methods Appl. Math. 10(2), 219–232 (2010)MathSciNetCrossRefMATH Strehl, R., Sokolov, A., Kuzmin, D., Turek, S.: A flux-corrected finite element method for chemotaxis problems. Comput. Methods Appl. Math. 10(2), 219–232 (2010)MathSciNetCrossRefMATH
43.
44.
Zurück zum Zitat Tello, J.I., Winkler, M.: Stabilization in a two-species chemotaxis system with a logistic source. Nonlinearity 25(5), 1413–1425 (2012)MathSciNetCrossRefMATH Tello, J.I., Winkler, M.: Stabilization in a two-species chemotaxis system with a logistic source. Nonlinearity 25(5), 1413–1425 (2012)MathSciNetCrossRefMATH
45.
Zurück zum Zitat Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Commun. Partial Diff. Eqn. 35, 1516–1537 (2010)MathSciNetCrossRefMATH Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Commun. Partial Diff. Eqn. 35, 1516–1537 (2010)MathSciNetCrossRefMATH
46.
Zurück zum Zitat Woodward, D., Tyson, R., Myerscough, M., Murray, J., Budrene, E., Berg, H.: Spatio-temporal patterns generated by S. typhimurium. Biophys. J. 68, 2181–2189 (1995)CrossRef Woodward, D., Tyson, R., Myerscough, M., Murray, J., Budrene, E., Berg, H.: Spatio-temporal patterns generated by S. typhimurium. Biophys. J. 68, 2181–2189 (1995)CrossRef
47.
Zurück zum Zitat Yang, X., Shi, B., Chai, Z.: Coupled lattice Boltzmann method for generalized Keller–Segel chemotaxis model. Comput. Math. Appl. 68, 1653–1670 (2014)MathSciNetCrossRef Yang, X., Shi, B., Chai, Z.: Coupled lattice Boltzmann method for generalized Keller–Segel chemotaxis model. Comput. Math. Appl. 68, 1653–1670 (2014)MathSciNetCrossRef
Metadaten
Titel
A time semi-exponentially fitted scheme for chemotaxis-growth models
verfasst von
M. Akhmouch
M. Benzakour Amine
Publikationsdatum
05.08.2016
Verlag
Springer Milan
Erschienen in
Calcolo / Ausgabe 2/2017
Print ISSN: 0008-0624
Elektronische ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-016-0201-4

Weitere Artikel der Ausgabe 2/2017

Calcolo 2/2017 Zur Ausgabe