Skip to main content

2022 | OriginalPaper | Buchkapitel

A Topological Approach to Soergel Theory

verfasst von : Roman Bezrukavnikov, Simon Riche

Erschienen in: Representation Theory and Algebraic Geometry

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We develop a “Soergel theory” for Bruhat-constructible perverse sheaves on the flag variety GB of a complex reductive group G, with coefficients in an arbitrary field https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-82007-7_7/449373_1_En_7_IEq1_HTML.gif . Namely, we describe the endomorphisms of the projective cover of the skyscraper sheaf in terms of a “multiplicative” coinvariant algebra and then establish an equivalence of categories between projective (or tilting) objects in this category and a certain category of “Soergel modules” over this algebra. We also obtain a description of the derived category of unipotently T monodromic https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-82007-7_7/449373_1_En_7_IEq2_HTML.gif sheaves on GU (where U, T ⊂ B are the unipotent radical and the maximal torus), as a monoidal category, in terms of coherent sheaves on the formal neighborhood of the base point in https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-82007-7_7/449373_1_En_7_IEq3_HTML.gif , where https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-82007-7_7/449373_1_En_7_IEq4_HTML.gif is the https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-82007-7_7/449373_1_En_7_IEq5_HTML.gif -torus dual to T.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
All the torsors we will encounter in the present paper will be locally trivial for the Zariski topology.
 
2
All our pro-objects are tacitly parametrized by \(\mathbb {Z}_{\geq 0}\) (with its standard order).
 
3
This assumption is probably unnecessary. But since this is the setting we are mostly interested in, we will not consider the possible extension of this claim to the characteristic-0 setting.
 
4
Recall that in the étale setting, the U-equivariant and B-constructible derived categories are different if p > 0, due to the existence of nonconstant local systems on affine spaces. Here https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-82007-7_7/449373_1_En_7_IEq1144_HTML.gif is the full triangulated subcategory of https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-82007-7_7/449373_1_En_7_IEq1145_HTML.gif generated by pushforwards of constant local systems on strata.
 
5
Namely, it is claimed in this proof that the complex denoted “C” is concentrated in positive perverse degrees. But the arguments given there only imply that its negative perverse cohomology objects vanish.
 
Literatur
[AMRW]
Zurück zum Zitat P. Achar, S. Makisumi, S. Riche, and G. Williamson, Koszul duality for Kac-Moody groups and characters of tilting modules, J. Amer. Math. Soc. 32 (2019), 261–310.MathSciNetCrossRef P. Achar, S. Makisumi, S. Riche, and G. Williamson, Koszul duality for Kac-Moody groups and characters of tilting modules, J. Amer. Math. Soc. 32 (2019), 261–310.MathSciNetCrossRef
[AR1]
Zurück zum Zitat P. Achar and S. Riche, Koszul duality and semisimplicity of Frobenius, Ann. Inst. Fourier 63 (2013), 1511–1612.MathSciNetCrossRef P. Achar and S. Riche, Koszul duality and semisimplicity of Frobenius, Ann. Inst. Fourier 63 (2013), 1511–1612.MathSciNetCrossRef
[AR2]
Zurück zum Zitat P. Achar and S. Riche, Modular perverse sheaves on flag varieties I: tilting and parity sheaves, with a joint appendix with G. Williamson, Ann. Sci. Éc. Norm. Supér. 49 (2016), 325–370. P. Achar and S. Riche, Modular perverse sheaves on flag varieties I: tilting and parity sheaves, with a joint appendix with G. Williamson, Ann. Sci. Éc. Norm. Supér. 49 (2016), 325–370.
[AR3]
Zurück zum Zitat P. Achar and S. Riche, Modular perverse sheaves on flag varieties II: Koszul duality and formality, Duke Math. J. 165 (2016), 161–215.MathSciNetCrossRef P. Achar and S. Riche, Modular perverse sheaves on flag varieties II: Koszul duality and formality, Duke Math. J. 165 (2016), 161–215.MathSciNetCrossRef
[AJS]
Zurück zum Zitat H. H. Andersen, J. C. Jantzen, and W. Soergel, Representations of quantum groups at ap-th root of unity and of semisimple groups in characteristicp: independence ofp, Astérisque 220 (1994), 1–321.MathSciNetMATH H. H. Andersen, J. C. Jantzen, and W. Soergel, Representations of quantum groups at ap-th root of unity and of semisimple groups in characteristicp: independence ofp, Astérisque 220 (1994), 1–321.MathSciNetMATH
[AB]
Zurück zum Zitat S. Arkhipov and R. Bezrukavnikov, Perverse sheaves on affine flags and Langlands dual group, with an appendix by R. Bezrukavnikov and I Mirković, Israel J. Math 170 (2009), 135–183. S. Arkhipov and R. Bezrukavnikov, Perverse sheaves on affine flags and Langlands dual group, with an appendix by R. Bezrukavnikov and I Mirković, Israel J. Math 170 (2009), 135–183.
[ABG]
Zurück zum Zitat S. Arkhipov, R. Bezrukavnikov, and V. Ginzburg, Quantum groups, the loop Grassmannian, and the Springer resolution, J. Amer. Math. Soc. 17 (2004), 595–678.MathSciNetCrossRef S. Arkhipov, R. Bezrukavnikov, and V. Ginzburg, Quantum groups, the loop Grassmannian, and the Springer resolution, J. Amer. Math. Soc. 17 (2004), 595–678.MathSciNetCrossRef
[Ba]
[BR]
Zurück zum Zitat P. Baumann and S. Riche, Notes on the geometric Satake equivalence, in Relative Aspects in Representation Theory, Langlands Functoriality and Automorphic Forms, CIRM Jean-Morlet Chair, Spring 2016 (V. Heiermann, D. Prasad, Eds.), 1–134, Lecture Notes in Math. 2221, Springer, 2018. P. Baumann and S. Riche, Notes on the geometric Satake equivalence, in Relative Aspects in Representation Theory, Langlands Functoriality and Automorphic Forms, CIRM Jean-Morlet Chair, Spring 2016 (V. Heiermann, D. Prasad, Eds.), 1–134, Lecture Notes in Math. 2221, Springer, 2018.
[Be]
Zurück zum Zitat A. Beı̆linson, On the derived category of perverse sheaves, in K-theory, arithmetic and geometry (Moscow, 1984–1986), 27–41, Lecture Notes in Math. 1289, Springer-Verlag, 1987. A. Beı̆linson, On the derived category of perverse sheaves, in K-theory, arithmetic and geometry (Moscow, 1984–1986), 27–41, Lecture Notes in Math. 1289, Springer-Verlag, 1987.
[BB]
Zurück zum Zitat A. Beı̆linson and J. Bernstein, Localisation de\(\mathfrak {g}\)-modules, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 15–18. A. Beı̆linson and J. Bernstein, Localisation de\(\mathfrak {g}\)-modules, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 15–18.
[BBD]
Zurück zum Zitat A. Beı̆linson, J. Bernstein, and P. Deligne, Faisceaux pervers, in Analyse et topologie sur les espaces singuliers, I (Luminy, 1981), Astérisque 100 (1982), 5–171. A. Beı̆linson, J. Bernstein, and P. Deligne, Faisceaux pervers, in Analyse et topologie sur les espaces singuliers, I (Luminy, 1981), Astérisque 100 (1982), 5–171.
[BBM]
Zurück zum Zitat A. Beı̆linson, R. Bezrukavnikov, and I. Mirković, Tilting exercises, Mosc. Math. J. 4 (2004), 547–557, 782. A. Beı̆linson, R. Bezrukavnikov, and I. Mirković, Tilting exercises, Mosc. Math. J. 4 (2004), 547–557, 782.
[BG]
Zurück zum Zitat A. Beı̆linson and V. Ginzburg, Wall-crossing functors and\(\mathcal {D}\)-modules, Represent. Theory 3 (1999), 1–31. A. Beı̆linson and V. Ginzburg, Wall-crossing functors and\(\mathcal {D}\)-modules, Represent. Theory 3 (1999), 1–31.
[BGS]
Zurück zum Zitat A. Beı̆linson, V. Ginzburg, and W. Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), 473–527. A. Beı̆linson, V. Ginzburg, and W. Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), 473–527.
[BY]
[CYZ]
[He]
Zurück zum Zitat S. Herpel, On the smoothness of centralizers in reductive groups, Trans. Amer. Math. Soc. 365 (2013), 3753–3774.MathSciNetCrossRef S. Herpel, On the smoothness of centralizers in reductive groups, Trans. Amer. Math. Soc. 365 (2013), 3753–3774.MathSciNetCrossRef
[KS1]
Zurück zum Zitat M. Kashiwara and P. Schapira, Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften 292, Springer, 1990. M. Kashiwara and P. Schapira, Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften 292, Springer, 1990.
[KS2]
Zurück zum Zitat M. Kashiwara and P. Schapira, Categories and sheaves, Grundlehren der Mathematischen Wissenschaften 332, Springer, 2006. M. Kashiwara and P. Schapira, Categories and sheaves, Grundlehren der Mathematischen Wissenschaften 332, Springer, 2006.
[KL]
Zurück zum Zitat D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165–184.MathSciNetCrossRef D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165–184.MathSciNetCrossRef
[KK]
Zurück zum Zitat B. Kostant and S. Kumar, T-equivariantK-theory of generalized flag varieties, J. Differential Geom. 32 (1990), 549–603.MathSciNetCrossRef B. Kostant and S. Kumar, T-equivariantK-theory of generalized flag varieties, J. Differential Geom. 32 (1990), 549–603.MathSciNetCrossRef
[La]
Zurück zum Zitat T. Y. Lam, A First course in noncommutative rings, second edition, Graduate Texts in Mathematics 131, Springer, 2001.CrossRef T. Y. Lam, A First course in noncommutative rings, second edition, Graduate Texts in Mathematics 131, Springer, 2001.CrossRef
[LC]
[Lu]
Zurück zum Zitat G. Lusztig, Cuspidal local systems and graded Hecke algebras. I. Inst. Hautes Études Sci. Publ. Math. 67 (1988), 145–202.MathSciNetCrossRef G. Lusztig, Cuspidal local systems and graded Hecke algebras. I. Inst. Hautes Études Sci. Publ. Math. 67 (1988), 145–202.MathSciNetCrossRef
[Mi]
Zurück zum Zitat J. S. Milne, Étale cohomology, Princeton Mathematical Series 33, Princeton University Press, 1980. J. S. Milne, Étale cohomology, Princeton Mathematical Series 33, Princeton University Press, 1980.
[Or]
Zurück zum Zitat D. Orlov, Formal completions and idempotent completions of triangulated categories of singularities, Adv. in Math. 226 (2011), 206–217.MathSciNetCrossRef D. Orlov, Formal completions and idempotent completions of triangulated categories of singularities, Adv. in Math. 226 (2011), 206–217.MathSciNetCrossRef
[RSW]
[So1]
Zurück zum Zitat W. Soergel, Équivalences de certaines catégories de\(\mathfrak {g}\)-modules, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), 725–728. W. Soergel, Équivalences de certaines catégories de\(\mathfrak {g}\)-modules, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), 725–728.
[So2]
Zurück zum Zitat W. Soergel, Kategorie\(\mathscr {O}\), perverse Garben und Moduln über den Koinvarianten zur Weylgruppe, J. Amer. Math. Soc. 3 (1990), 421–445. W. Soergel, Kategorie\(\mathscr {O}\), perverse Garben und Moduln über den Koinvarianten zur Weylgruppe, J. Amer. Math. Soc. 3 (1990), 421–445.
[So3]
Zurück zum Zitat W. Soergel, On the relation between intersection cohomology and representation theory in positive characteristic, in Commutative algebra, homological algebra and representation theory (Catania/Genoa/Rome, 1998), J. Pure Appl. Algebra 152 (2000), 311–335.MathSciNetCrossRef W. Soergel, On the relation between intersection cohomology and representation theory in positive characteristic, in Commutative algebra, homological algebra and representation theory (Catania/Genoa/Rome, 1998), J. Pure Appl. Algebra 152 (2000), 311–335.MathSciNetCrossRef
[So4]
Zurück zum Zitat W. Soergel, Kazhdan–Lusztig-Polynome und unzerlegbare Bimoduln über Polynomringen, J. Inst. Math. Jussieu 6 (2007), 501–525.MathSciNetCrossRef W. Soergel, Kazhdan–Lusztig-Polynome und unzerlegbare Bimoduln über Polynomringen, J. Inst. Math. Jussieu 6 (2007), 501–525.MathSciNetCrossRef
[Sp]
Zurück zum Zitat T. A. Springer, Linear algebraic groups, Second edition, Progress in Mathematics 9, Birkhäuser Boston, 1998. T. A. Springer, Linear algebraic groups, Second edition, Progress in Mathematics 9, Birkhäuser Boston, 1998.
[Ve]
Zurück zum Zitat J.-L. Verdier, Spécialisation de faisceaux et monodromie modérée, in Analysis and topology on singular spaces, II, III (Luminy, 1981), 332–364, Astérisque 101, 1983. J.-L. Verdier, Spécialisation de faisceaux et monodromie modérée, in Analysis and topology on singular spaces, II, III (Luminy, 1981), 332–364, Astérisque 101, 1983.
Metadaten
Titel
A Topological Approach to Soergel Theory
verfasst von
Roman Bezrukavnikov
Simon Riche
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-82007-7_7