Skip to main content
Erschienen in: Computational Mechanics 3/2014

01.09.2014 | Original Paper

A topology optimization method for geometrically nonlinear structures with meshless analysis and independent density field interpolation

verfasst von: Qizhi He, Zhan Kang, Yiqiang Wang

Erschienen in: Computational Mechanics | Ausgabe 3/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Based on the element-free Galerkin (EFG) method, an analysis-independent density variable approach is proposed for topology optimization of geometrically nonlinear structures. This method eliminates the mesh distortion problem often encountered in the finite element analysis of large deformations. The topology optimization problem is formulated on the basis of point-wise description of the material density field. This density field is constructed by a physical meaning-preserving interpolation with the density values of the design variable points, which can be freely positioned independently of the field points used in the displacement analysis. An energy criterion of convergence is used to resolve the well-known convergence difficulty, which would be usually encountered in low density regions, where displacements oscillate severely during the optimization process. Numerical examples are given to demonstrate the effectiveness of the developed approach. It is shown that relatively clear optimal solutions can be achieved, without exhibiting numerical instabilities like the so-called “layering” or “islanding” phenomena even in large deformation cases. This study not only confirms the potential of the EFG method in topology optimization involving large deformations, but also provides a novel topology optimization framework based on element-free discretization of displacement and density fields, which can also easily incorporate other meshless analysis methods for specific purposes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Compu Methods Appl Mech Eng 71(2):197–224CrossRefMathSciNet Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Compu Methods Appl Mech Eng 71(2):197–224CrossRefMathSciNet
2.
Zurück zum Zitat Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331–390CrossRef Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331–390CrossRef
3.
Zurück zum Zitat Bendsoe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654 Bendsoe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654
4.
Zurück zum Zitat Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Structl Optim 4(3–4):250–252CrossRef Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Structl Optim 4(3–4):250–252CrossRef
5.
Zurück zum Zitat Zhou M, Rozvany GIN (1991) The COC algorithm, Part II: Topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336CrossRef Zhou M, Rozvany GIN (1991) The COC algorithm, Part II: Topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336CrossRef
6.
Zurück zum Zitat Bendsøe MP (1995) Optimization of structural topology shape and material. Springer, New YorkCrossRef Bendsøe MP (1995) Optimization of structural topology shape and material. Springer, New YorkCrossRef
7.
Zurück zum Zitat Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Physics 194(1):363–393CrossRefMATHMathSciNet Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Physics 194(1):363–393CrossRefMATHMathSciNet
8.
Zurück zum Zitat Wang MY, Wang XM, Guo DM (2003) A level set method for structural topology optimization. Compu Methods Appl Mech Eng 192(1–2):227–246CrossRefMATH Wang MY, Wang XM, Guo DM (2003) A level set method for structural topology optimization. Compu Methods Appl Mech Eng 192(1–2):227–246CrossRefMATH
9.
Zurück zum Zitat Belytschko T, Xiao SP, Parimi C (2003) Topology optimization with implicit functions and regularization. Int J Numer Methods Eng 57:1177–1196CrossRefMATH Belytschko T, Xiao SP, Parimi C (2003) Topology optimization with implicit functions and regularization. Int J Numer Methods Eng 57:1177–1196CrossRefMATH
10.
Zurück zum Zitat Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Compu Struct 49(5):885–896CrossRef Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Compu Struct 49(5):885–896CrossRef
11.
Zurück zum Zitat Jog C (1996) Distributed-parameter optimization and topology design for non-linear thermoelasticity. Comput Methods Appl Mech Eng 132(1–2):117–134CrossRefMATHMathSciNet Jog C (1996) Distributed-parameter optimization and topology design for non-linear thermoelasticity. Comput Methods Appl Mech Eng 132(1–2):117–134CrossRefMATHMathSciNet
12.
Zurück zum Zitat Bruns TE, Tortorelli DA (1998) Topology optimization of geometrically nonlinear structures and compliant mechanisms. In: Proceedings of the 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization. St. Louis, MI, pp 1874–1882 Bruns TE, Tortorelli DA (1998) Topology optimization of geometrically nonlinear structures and compliant mechanisms. In: Proceedings of the 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization. St. Louis, MI, pp 1874–1882
13.
Zurück zum Zitat Buhl T, Pedersen CBW, Sigmund O (2000) Stiffness design of geometrically nonlinear structures using topology optimization. Struct Multidiscip Optim 19(2):93–104CrossRef Buhl T, Pedersen CBW, Sigmund O (2000) Stiffness design of geometrically nonlinear structures using topology optimization. Struct Multidiscip Optim 19(2):93–104CrossRef
14.
Zurück zum Zitat Gea HC, Luo JH (2001) Topology optimization of structures with geometrical nonlinearities. Comput Struct 79(20–21):1977–1985CrossRef Gea HC, Luo JH (2001) Topology optimization of structures with geometrical nonlinearities. Comput Struct 79(20–21):1977–1985CrossRef
15.
Zurück zum Zitat Pedersen CBW, Buhl T, Sigmund O (2001) Topology synthesis of large-displacement compliant mechanisms. Int J Numer Methods Eng 50(12):2683–2705CrossRefMATH Pedersen CBW, Buhl T, Sigmund O (2001) Topology synthesis of large-displacement compliant mechanisms. Int J Numer Methods Eng 50(12):2683–2705CrossRefMATH
16.
Zurück zum Zitat Sigmund O (2001) Design of multiphysics actuators using topology optimization—Part I: one-material structures. Comput Methods Appl Mech Eng 190(49–50):6577–6604CrossRefMATH Sigmund O (2001) Design of multiphysics actuators using topology optimization—Part I: one-material structures. Comput Methods Appl Mech Eng 190(49–50):6577–6604CrossRefMATH
17.
Zurück zum Zitat Sigmund O (2001) Design of multiphysics actuators using topology optimization—Part II: two-material structures. Comput Methods Appl Mech Eng 190(49–50):6605–6627CrossRef Sigmund O (2001) Design of multiphysics actuators using topology optimization—Part II: two-material structures. Comput Methods Appl Mech Eng 190(49–50):6605–6627CrossRef
18.
Zurück zum Zitat Bruns TE, Sigmund O, Tortorelli DA (2002) Numerical methods for the topology optimization of structures that exhibit snap-through. Int J Numer Methods Eng 55(10):1215–1237CrossRefMATH Bruns TE, Sigmund O, Tortorelli DA (2002) Numerical methods for the topology optimization of structures that exhibit snap-through. Int J Numer Methods Eng 55(10):1215–1237CrossRefMATH
19.
Zurück zum Zitat Luo Z, Tong L (2008) A level set method for shape and topology optimization of large-displacement compliant mechanisms. Int J Numer Methods Eng 76(6):862–892CrossRefMATHMathSciNet Luo Z, Tong L (2008) A level set method for shape and topology optimization of large-displacement compliant mechanisms. Int J Numer Methods Eng 76(6):862–892CrossRefMATHMathSciNet
20.
Zurück zum Zitat Kang Z, Luo Y (2009) Non-probabilistic reliability-based topology optimization of geometrically nonlinear structures using convex models. Comput Methods Appl Mech Eng 198(41–44):3228–3238CrossRefMATHMathSciNet Kang Z, Luo Y (2009) Non-probabilistic reliability-based topology optimization of geometrically nonlinear structures using convex models. Comput Methods Appl Mech Eng 198(41–44):3228–3238CrossRefMATHMathSciNet
21.
Zurück zum Zitat Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459CrossRefMATH Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459CrossRefMATH
22.
Zurück zum Zitat Cho S, Jung H-S (2003) Design sensitivity analysis and topology optimization of displacement-loaded non-linear structures. Comput Methods Appl Mech Eng 192(22–24):2539–2553CrossRefMATH Cho S, Jung H-S (2003) Design sensitivity analysis and topology optimization of displacement-loaded non-linear structures. Comput Methods Appl Mech Eng 192(22–24):2539–2553CrossRefMATH
23.
Zurück zum Zitat Bruns TE, Tortorelli DA (2003) An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms. Int J Numer Methods Eng 57(10):1413–1430CrossRefMATH Bruns TE, Tortorelli DA (2003) An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms. Int J Numer Methods Eng 57(10):1413–1430CrossRefMATH
24.
Zurück zum Zitat Yoon GH, Kim YY (2005) Element connectivity parameterization for topology optimization of geometrically nonlinear structures. Int J Solids Struct 42(7):1983–2009CrossRefMATHMathSciNet Yoon GH, Kim YY (2005) Element connectivity parameterization for topology optimization of geometrically nonlinear structures. Int J Solids Struct 42(7):1983–2009CrossRefMATHMathSciNet
26.
27.
Zurück zum Zitat Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139(1–4):3–47CrossRefMATH Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139(1–4):3–47CrossRefMATH
28.
Zurück zum Zitat Chen JS, Pan CH, Wu CT, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139(1–4):195–227CrossRefMATHMathSciNet Chen JS, Pan CH, Wu CT, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139(1–4):195–227CrossRefMATHMathSciNet
29.
Zurück zum Zitat Liu GR, Gu YT (2005) An Introduction to meshfree methods and their programming. Springer, Berlin Liu GR, Gu YT (2005) An Introduction to meshfree methods and their programming. Springer, Berlin
30.
Zurück zum Zitat Chen JS, Pan C, Wu CT (1997) Large deformation analysis of rubber based on a reproducing kernel particle method. Comput Mech 19(3):211–227CrossRefMATHMathSciNet Chen JS, Pan C, Wu CT (1997) Large deformation analysis of rubber based on a reproducing kernel particle method. Comput Mech 19(3):211–227CrossRefMATHMathSciNet
31.
Zurück zum Zitat Cho S, Kwak J (2006) Topology design optimization of geometrically non-linear structures using meshfree method. Compu Methods Appl Mech Eng 195(44–47):5909–5925CrossRefMATHMathSciNet Cho S, Kwak J (2006) Topology design optimization of geometrically non-linear structures using meshfree method. Compu Methods Appl Mech Eng 195(44–47):5909–5925CrossRefMATHMathSciNet
32.
Zurück zum Zitat Du Y, Luo Z, Tian Q, Chen L (2009) Topology optimization for thermo-mechanical compliant actuators using mesh-free methods. Eng Optim 41(8):753–772CrossRefMathSciNet Du Y, Luo Z, Tian Q, Chen L (2009) Topology optimization for thermo-mechanical compliant actuators using mesh-free methods. Eng Optim 41(8):753–772CrossRefMathSciNet
33.
Zurück zum Zitat Paulino GH, Le CH (2009) A modified Q4/Q4 element for topology optimization. Struct Multidiscip Optim 37(3):255–264 Paulino GH, Le CH (2009) A modified Q4/Q4 element for topology optimization. Struct Multidiscip Optim 37(3):255–264
34.
Zurück zum Zitat Zhou JX, Zou W (2008) Meshless approximation combined with implicit topology description for optimization of continua. Struct Multidiscip Optimization 36(4):347–353CrossRefMATH Zhou JX, Zou W (2008) Meshless approximation combined with implicit topology description for optimization of continua. Struct Multidiscip Optimization 36(4):347–353CrossRefMATH
35.
Zurück zum Zitat Luo Z, Zhang N, Wang Y, Gao W (2013) Topology optimization of structures using meshless density variable approximants. Int J Numer Methods Eng 93(4):443–464CrossRefMathSciNet Luo Z, Zhang N, Wang Y, Gao W (2013) Topology optimization of structures using meshless density variable approximants. Int J Numer Methods Eng 93(4):443–464CrossRefMathSciNet
36.
Zurück zum Zitat Kang Z, Wang Y (2011) Structural topology optimization based on non-local Shepard interpolation of density field. Comput Methods Appl Mech Eng 200(49–52):3515–3525CrossRefMATHMathSciNet Kang Z, Wang Y (2011) Structural topology optimization based on non-local Shepard interpolation of density field. Comput Methods Appl Mech Eng 200(49–52):3515–3525CrossRefMATHMathSciNet
37.
Zurück zum Zitat Kang Z, Wang Y (2012) A nodal variable method of structural topology optimization based on Shepard interpolant. Int J Numer Methods Eng 90(3):329–342CrossRefMATHMathSciNet Kang Z, Wang Y (2012) A nodal variable method of structural topology optimization based on Shepard interpolant. Int J Numer Methods Eng 90(3):329–342CrossRefMATHMathSciNet
38.
Zurück zum Zitat Haug EJ, Choi KK (1986) Design sensitivity analysis of structural systems. Academic Press, New YorkMATH Haug EJ, Choi KK (1986) Design sensitivity analysis of structural systems. Academic Press, New YorkMATH
39.
Zurück zum Zitat Choi KK, Kim NH (2005) Structural sensitivity analysis and optimization I-linear systems. Springer, New York Choi KK, Kim NH (2005) Structural sensitivity analysis and optimization I-linear systems. Springer, New York
40.
Zurück zum Zitat Kim NH, Choi KK, Chen JS, Park YH (2000) Meshless shape design sensitivity analysis and optimization for contact problem with friction. Comput Mech 25(2–3):157–168CrossRefMATH Kim NH, Choi KK, Chen JS, Park YH (2000) Meshless shape design sensitivity analysis and optimization for contact problem with friction. Comput Mech 25(2–3):157–168CrossRefMATH
41.
Zurück zum Zitat Kim NH, Choi KK, Chen JS (2001) Die shape design optimization of sheet metal stamping process using meshfree method. Int J Numer Methods Eng 51(12):1385–1405CrossRefMATH Kim NH, Choi KK, Chen JS (2001) Die shape design optimization of sheet metal stamping process using meshfree method. Int J Numer Methods Eng 51(12):1385–1405CrossRefMATH
42.
Zurück zum Zitat Bathe KJ (1996) Finite element procedures. Prentice-Hall, Upper Saddle River Bathe KJ (1996) Finite element procedures. Prentice-Hall, Upper Saddle River
43.
Zurück zum Zitat Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, ChichesterMATH Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, ChichesterMATH
44.
Zurück zum Zitat Bathe K-J, Wilson EL (1975) Finite element formulations for large deformation dynamic analysis. Int J Numer Methods Eng 9:353–386CrossRefMATH Bathe K-J, Wilson EL (1975) Finite element formulations for large deformation dynamic analysis. Int J Numer Methods Eng 9:353–386CrossRefMATH
45.
Zurück zum Zitat Crisfield A (1997) Non-linear finite element analysis of solids and structures, vol 1–2. Wiley, Chichester Crisfield A (1997) Non-linear finite element analysis of solids and structures, vol 1–2. Wiley, Chichester
46.
Zurück zum Zitat Jog CS, Haber RB (1996) Stability of finite element models for distributed-parameter optimization and topology design. Comput Methods Appl Mech Eng 130(3–4):203–226CrossRefMATHMathSciNet Jog CS, Haber RB (1996) Stability of finite element models for distributed-parameter optimization and topology design. Comput Methods Appl Mech Eng 130(3–4):203–226CrossRefMATHMathSciNet
47.
Zurück zum Zitat Rahmatalla SF, Swan CC (2004) A Q4/Q4 continuum structural topology optimization implementation. Struct Multidiscip Optim 27(1–2):130–135CrossRef Rahmatalla SF, Swan CC (2004) A Q4/Q4 continuum structural topology optimization implementation. Struct Multidiscip Optim 27(1–2):130–135CrossRef
48.
Zurück zum Zitat Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373CrossRefMATHMathSciNet Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373CrossRefMATHMathSciNet
49.
Zurück zum Zitat Haber RB, Jog CS, Bendsoe MP (1996) A new approach to variable-topology shape design using a constraint on perimeter. Struct Optim 11(1):1–12CrossRef Haber RB, Jog CS, Bendsoe MP (1996) A new approach to variable-topology shape design using a constraint on perimeter. Struct Optim 11(1):1–12CrossRef
50.
Zurück zum Zitat Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75CrossRef Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75CrossRef
52.
Zurück zum Zitat Yoon GH, Kim YY, Bendsoe MP, Sigmund O (2004) Hinge-free topology optimization with embedded translation-invariant differentiable wavelet shrinkage. Struct Multidiscip Optim 27(3):139–150CrossRef Yoon GH, Kim YY, Bendsoe MP, Sigmund O (2004) Hinge-free topology optimization with embedded translation-invariant differentiable wavelet shrinkage. Struct Multidiscip Optim 27(3):139–150CrossRef
53.
Zurück zum Zitat Liu WK, Li S, Belytschko T (1997) Moving least-square reproducing kernel methods (I) Methodology and convergence. Comput Methods Appl Mech Eng 143(1–2):113–154CrossRefMATHMathSciNet Liu WK, Li S, Belytschko T (1997) Moving least-square reproducing kernel methods (I) Methodology and convergence. Comput Methods Appl Mech Eng 143(1–2):113–154CrossRefMATHMathSciNet
54.
Zurück zum Zitat Lazarov BS, Schevenels M, Sigmund O (2012) Topology optimization with geometric uncertainties by perturbation techniques. Int J Numer Methods Eng 90(11):1321–1336CrossRefMATH Lazarov BS, Schevenels M, Sigmund O (2012) Topology optimization with geometric uncertainties by perturbation techniques. Int J Numer Methods Eng 90(11):1321–1336CrossRefMATH
Metadaten
Titel
A topology optimization method for geometrically nonlinear structures with meshless analysis and independent density field interpolation
verfasst von
Qizhi He
Zhan Kang
Yiqiang Wang
Publikationsdatum
01.09.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 3/2014
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-014-1011-7

Weitere Artikel der Ausgabe 3/2014

Computational Mechanics 3/2014 Zur Ausgabe

Neuer Inhalt