Skip to main content

2025 | OriginalPaper | Buchkapitel

A Transformer and LSTM Model for Electricity Consumption Forecasting and User’s Behavior Influence

verfasst von : Laldja Ziani, Anis Chawki Abbes, Mohamed Essaid Khanouche, Parisa Ghodous

Erschienen in: Web Information Systems Engineering – WISE 2024

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Consumer behavior and habits play a crucial role in household energy consumption patterns. Influencing user behaviors towards sustainable electricity consumption practices consists an open challenge. To address this issue, the Internet of Behaviors (IoB) has emerged as a new paradigm that combines real-time data coming from Internet of Things (IoT) devices with information gathered from behavioral science and data analytics to influence people’s behavior. In the energy sector, IoB systems can build highly personalized models that allow smart home devices to encourage users to adopt more sustainable energy behaviours. This paper proposes a hybrid forecasting approach combining Long Short-Term Memory (LSTM) with a Transformer model to accurately predict electricity consumption in individual households. The proposed approach is integrated into a new IoB system designed to provide personalized and timely alerts that encourage energy-efficient practices, reducing thus costs and energy waste. The performance of this approach are compared with several baseline models using a real dataset related to household electricity consumption. The results show that the hybrid approach achieved lower Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE) across various electricity patterns, demonstrating a better ability to anticipate future energy demands. The improved forecasting accuracy enables the IoB system to generate more precise and timely alerts, potentially leading to more effective user behaviors influence and significant energy savings.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ahmed, S., Nielsen, I.E., Tripathi, A., Siddiqui, S., Ramachandran, R.P., Rasool, G.: Transformers in time-series analysis: a tutorial. Circ. Syst. Sig. Process. 42(12), 7433–7466 (2023)CrossRef Ahmed, S., Nielsen, I.E., Tripathi, A., Siddiqui, S., Ramachandran, R.P., Rasool, G.: Transformers in time-series analysis: a tutorial. Circ. Syst. Sig. Process. 42(12), 7433–7466 (2023)CrossRef
2.
Zurück zum Zitat Alhussein, M., Aurangzeb, K., Haider, S.I.: Hybrid CNN-LSTM model for short-term individual household load forecasting. IEEE Access 8, 180544–180557 (2020)CrossRef Alhussein, M., Aurangzeb, K., Haider, S.I.: Hybrid CNN-LSTM model for short-term individual household load forecasting. IEEE Access 8, 180544–180557 (2020)CrossRef
3.
Zurück zum Zitat Chan, J.W., Yeo, C.K.: Electrical power consumption forecasting with transformers. In: 2022 IEEE Electrical Power and Energy Conference (EPEC), pp. 255–260 (2022) Chan, J.W., Yeo, C.K.: Electrical power consumption forecasting with transformers. In: 2022 IEEE Electrical Power and Energy Conference (EPEC), pp. 255–260 (2022)
4.
Zurück zum Zitat Chen, S., Zhang, G., Xia, X., Chen, Y., Setunge, S., Shi, L.: The impacts of occupant behavior on building energy consumption: a review. Sustain. Energ. Technol. Assess. 45, 101212 (2021) Chen, S., Zhang, G., Xia, X., Chen, Y., Setunge, S., Shi, L.: The impacts of occupant behavior on building energy consumption: a review. Sustain. Energ. Technol. Assess. 45, 101212 (2021)
5.
Zurück zum Zitat Chen, W.T., Wang, C.H., Merrett, H.C., Liu, S.H., Chang, J.J.: Electricity consumption prediction-a case study of a university library. J. Build. Eng. 76, 106990 (2023)CrossRef Chen, W.T., Wang, C.H., Merrett, H.C., Liu, S.H., Chang, J.J.: Electricity consumption prediction-a case study of a university library. J. Build. Eng. 76, 106990 (2023)CrossRef
6.
Zurück zum Zitat Elayan, H., Aloqaily, M., Karray, F., Guizani, M.: Decentralized IoB for influencing IoT-based systems behavior. In: ICC 2022-IEEE International Conference on Communications, pp. 3340–3345 (2022) Elayan, H., Aloqaily, M., Karray, F., Guizani, M.: Decentralized IoB for influencing IoT-based systems behavior. In: ICC 2022-IEEE International Conference on Communications, pp. 3340–3345 (2022)
7.
Zurück zum Zitat Elayan, H., Aloqaily, M., Karray, F., Guizani, M.: Internet of behavior (IoB) and explainable AI systems for influencing IoT behavior. IEEE Netw. 37(1) (2022) Elayan, H., Aloqaily, M., Karray, F., Guizani, M.: Internet of behavior (IoB) and explainable AI systems for influencing IoT behavior. IEEE Netw. 37(1) (2022)
8.
Zurück zum Zitat Hadjout, D., Torres, J., Troncoso, A., Sebaa, A., Martínez-Álvarez, F.: Electricity consumption forecasting based on ensemble deep learning with application to the Algerian market. Energy 243, 123060 (2022)CrossRef Hadjout, D., Torres, J., Troncoso, A., Sebaa, A., Martínez-Álvarez, F.: Electricity consumption forecasting based on ensemble deep learning with application to the Algerian market. Energy 243, 123060 (2022)CrossRef
9.
Zurück zum Zitat Hadjout, D., Sebaa, A., Torres, J.F., Martínez-Álvarez, F.: Electricity consumption forecasting with outliers handling based on clustering and deep learning with application to the Algerian market. Expert Syst. Appl. 227, 120123 (2023)CrossRef Hadjout, D., Sebaa, A., Torres, J.F., Martínez-Álvarez, F.: Electricity consumption forecasting with outliers handling based on clustering and deep learning with application to the Algerian market. Expert Syst. Appl. 227, 120123 (2023)CrossRef
11.
Zurück zum Zitat Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., Shah, M.: Transformers in vision: a survey. ACM CSUR 54(10s), 1–41 (2022)CrossRef Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., Shah, M.: Transformers in vision: a survey. ACM CSUR 54(10s), 1–41 (2022)CrossRef
12.
Zurück zum Zitat Kim, H., Park, S., Kim, S.: Time-series clustering and forecasting household electricity demand using smart meter data. Energy Rep. 9, 4111–4121 (2023)CrossRef Kim, H., Park, S., Kim, S.: Time-series clustering and forecasting household electricity demand using smart meter data. Energy Rep. 9, 4111–4121 (2023)CrossRef
13.
Zurück zum Zitat Krechiem, A., Khadir, M.T.: Algerian electricity consumption forecasting with artificial neural networks using a multiple seasonal-trend decomposition using loess. In: 2023 International Conference on Decision Aid Sciences and Applications (DASA), pp. 586–591 (2023) Krechiem, A., Khadir, M.T.: Algerian electricity consumption forecasting with artificial neural networks using a multiple seasonal-trend decomposition using loess. In: 2023 International Conference on Decision Aid Sciences and Applications (DASA), pp. 586–591 (2023)
14.
Zurück zum Zitat Li, X., Zhong, Y., Shang, W., Zhang, X., Shan, B., Wang, X.: Total electricity consumption forecasting based on transformer time series models. Procedia Comput. Sci. 214, 312–320 (2022)CrossRef Li, X., Zhong, Y., Shang, W., Zhang, X., Shan, B., Wang, X.: Total electricity consumption forecasting based on transformer time series models. Procedia Comput. Sci. 214, 312–320 (2022)CrossRef
15.
Zurück zum Zitat Lim, B., Arık, S.Ö., Loeff, N., Pfister, T.: Temporal fusion transformers for interpretable multi-horizon time series forecasting. Int. J. Forecast. 37(4), 1748–1764 (2021)CrossRef Lim, B., Arık, S.Ö., Loeff, N., Pfister, T.: Temporal fusion transformers for interpretable multi-horizon time series forecasting. Int. J. Forecast. 37(4), 1748–1764 (2021)CrossRef
16.
Zurück zum Zitat Moustati, I., Gherabi, N., El Massari, H., Saadi, M.: From the internet of things (IoT) to the internet of behaviors (IoB) for data analysis. In: 2023 7th IEEE Congress on Information Science and Technology (CiSt), pp. 634–639 (2023) Moustati, I., Gherabi, N., El Massari, H., Saadi, M.: From the internet of things (IoT) to the internet of behaviors (IoB) for data analysis. In: 2023 7th IEEE Congress on Information Science and Technology (CiSt), pp. 634–639 (2023)
17.
Zurück zum Zitat Rock, L.Y., Tajudeen, F.P., Chung, Y.W.: Usage and impact of the internet-of-things-based smart home technology: a quality-of-life perspective. Univ. Access Inf. Soc. 23(1), 345–364 (2024)CrossRef Rock, L.Y., Tajudeen, F.P., Chung, Y.W.: Usage and impact of the internet-of-things-based smart home technology: a quality-of-life perspective. Univ. Access Inf. Soc. 23(1), 345–364 (2024)CrossRef
18.
Zurück zum Zitat Romeo, N.K., Mahangue, E.B.C., Cossa, A.E., Kaur, M., Goyal, M.K., Chhabra, M.: Transforming data into behavioral insights: a review of the internet of behavior (IoB). In: 2024 11th International Conference on Computing for Sustainable Global Development (INDIACom), pp. 70–75 (2024) Romeo, N.K., Mahangue, E.B.C., Cossa, A.E., Kaur, M., Goyal, M.K., Chhabra, M.: Transforming data into behavioral insights: a review of the internet of behavior (IoB). In: 2024 11th International Conference on Computing for Sustainable Global Development (INDIACom), pp. 70–75 (2024)
19.
Zurück zum Zitat Shang, W., Cao, L., Li, F., Jiang, X., Li, X.: Building public market opinion indices for electricity consumption prediction of Chinese nonferrous metal industry. Procedia Comput. Sci. 221, 509–517 (2023)CrossRef Shang, W., Cao, L., Li, F., Jiang, X., Li, X.: Building public market opinion indices for electricity consumption prediction of Chinese nonferrous metal industry. Procedia Comput. Sci. 221, 509–517 (2023)CrossRef
20.
Zurück zum Zitat Syed, D., Abu-Rub, H., Ghrayeb, A., Refaat, S.S.: Household-level energy forecasting in smart buildings using a novel hybrid deep learning model. IEEE Access 9, 33498–33511 (2021)CrossRef Syed, D., Abu-Rub, H., Ghrayeb, A., Refaat, S.S.: Household-level energy forecasting in smart buildings using a novel hybrid deep learning model. IEEE Access 9, 33498–33511 (2021)CrossRef
21.
Zurück zum Zitat Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017) Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)
22.
Zurück zum Zitat Wang, J., Chen, X., Zhang, F., Chen, F., Xin, Y.: Building load forecasting using deep neural network with efficient feature fusion. J. Mod. Power Syst. Clean Energy 9(1), 160–169 (2021)CrossRef Wang, J., Chen, X., Zhang, F., Chen, F., Xin, Y.: Building load forecasting using deep neural network with efficient feature fusion. J. Mod. Power Syst. Clean Energy 9(1), 160–169 (2021)CrossRef
23.
Zurück zum Zitat Zeng, A., Chen, M., Zhang, L., Xu, Q.: Are transformers effective for time series forecasting? In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 11121–11128 (2023) Zeng, A., Chen, M., Zhang, L., Xu, Q.: Are transformers effective for time series forecasting? In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 11121–11128 (2023)
24.
Zurück zum Zitat Zhao, Q., Li, G., Cai, J., Zhou, M., Feng, L.: A tutorial on internet of behaviors: concept, architecture, technology, applications, and challenges. IEEE Commun. Surv. Tutorials 25(2) (2023) Zhao, Q., Li, G., Cai, J., Zhou, M., Feng, L.: A tutorial on internet of behaviors: concept, architecture, technology, applications, and challenges. IEEE Commun. Surv. Tutorials 25(2) (2023)
25.
Zurück zum Zitat Zhou, H., et al.: Informer: beyond efficient transformer for long sequence time-series forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 11106–11115 (2021) Zhou, H., et al.: Informer: beyond efficient transformer for long sequence time-series forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 11106–11115 (2021)
26.
Zurück zum Zitat Ziani, L., Khanouche, M.E., Belaid, A.: Internet of behaviors: a literature review of an emerging technology. In: 2022 First International Conference on Big Data, IoT, Web Intelligence and Applications (BIWA), pp. 42–47 (2022) Ziani, L., Khanouche, M.E., Belaid, A.: Internet of behaviors: a literature review of an emerging technology. In: 2022 First International Conference on Big Data, IoT, Web Intelligence and Applications (BIWA), pp. 42–47 (2022)
Metadaten
Titel
A Transformer and LSTM Model for Electricity Consumption Forecasting and User’s Behavior Influence
verfasst von
Laldja Ziani
Anis Chawki Abbes
Mohamed Essaid Khanouche
Parisa Ghodous
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-96-0573-6_26