Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 11/2012

01.11.2012

A True-Stress Creep Model Based on Deformation Mechanisms for Polycrystalline Materials

verfasst von: Xijia Wu, Steve Williams, Diguang Gong

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 11/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A true-stress creep model has been developed based on well-recognized deformation mechanisms, i.e., dislocation glide, dislocation climb, and grain boundary sliding. The model provides a physics-based description of the entire creep deformation process with regards to the strain-time history (primary, secondary, and tertiary creep), rupture strain and lifetime, which finds good agreement with experimental observations for Waspaloy. A deformation-mechanism map is constructed for Waspaloy, and a creep failure criterion is defined by the dominant deformation mechanisms leading to intergranular/transgranular fracture. Thus, the model is a self-consistent tool for creep life prediction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat E.N.D. Andrade, On the Viscous Flow in Metals and Allied Phenomena, Proc. R. Soc. A, 1910, 84, p 1–12CrossRef E.N.D. Andrade, On the Viscous Flow in Metals and Allied Phenomena, Proc. R. Soc. A, 1910, 84, p 1–12CrossRef
2.
Zurück zum Zitat F.H. Norton, The Creep of Steel at High Temperatures, McGraw-Hill, London, 1929 F.H. Norton, The Creep of Steel at High Temperatures, McGraw-Hill, London, 1929
3.
Zurück zum Zitat R.W. Bailey, The Utilization of Creep Test Data in Engineering Design, Proc. Inst. Mech. Eng., 1935, 131, p 209–284 R.W. Bailey, The Utilization of Creep Test Data in Engineering Design, Proc. Inst. Mech. Eng., 1935, 131, p 209–284
4.
Zurück zum Zitat A. Graham and K. Walles, Relationships Between Long and Short Time Creep and Tensile Properties of a Commercial Alloy, J. Iron Steel Inst., 1955, 179, p 105–120 A. Graham and K. Walles, Relationships Between Long and Short Time Creep and Tensile Properties of a Commercial Alloy, J. Iron Steel Inst., 1955, 179, p 105–120
5.
Zurück zum Zitat R.W. Evans and B. Wilshire, Creep of Metals and Alloys, The Institute of Metals, London, 1985 R.W. Evans and B. Wilshire, Creep of Metals and Alloys, The Institute of Metals, London, 1985
6.
Zurück zum Zitat L.M. Kachanov, On Creep Rupture Time, Proc. Acad. Sci. USSR, 1958, 8, p 26–31 L.M. Kachanov, On Creep Rupture Time, Proc. Acad. Sci. USSR, 1958, 8, p 26–31
7.
Zurück zum Zitat Y.N. Robotnov, Creep Problems in Structural Members (English translation), F.A. Leckie, Ed., North Holland, Boston Spa, 1969 Y.N. Robotnov, Creep Problems in Structural Members (English translation), F.A. Leckie, Ed., North Holland, Boston Spa, 1969
8.
Zurück zum Zitat A.M. Othman and D.R. Hayhurst, Multi-axial Creep Rupture of a Model Structure using a Two Parameter Material Model, Int. J. Mech. Sci., 1990, 32, p 35–48CrossRef A.M. Othman and D.R. Hayhurst, Multi-axial Creep Rupture of a Model Structure using a Two Parameter Material Model, Int. J. Mech. Sci., 1990, 32, p 35–48CrossRef
9.
Zurück zum Zitat J.L. Kowalewski, D.R. Hayhurst, and B.F. Dyson, Mechanisms Based Creep Constitutive Equations for an Aluminum Alloy, J. Strain Anal., 1994, 29, p 309–316CrossRef J.L. Kowalewski, D.R. Hayhurst, and B.F. Dyson, Mechanisms Based Creep Constitutive Equations for an Aluminum Alloy, J. Strain Anal., 1994, 29, p 309–316CrossRef
10.
Zurück zum Zitat I.J. Perrin and D.R. Hayhurst, Creep Constitutive Equations for a 0.5Cr-0.5Mo-0.25 V Ferritic Steel in the Temperature Range 600-675°C, J. Strain Anal., 1996, 31, p 299–314CrossRef I.J. Perrin and D.R. Hayhurst, Creep Constitutive Equations for a 0.5Cr-0.5Mo-0.25 V Ferritic Steel in the Temperature Range 600-675°C, J. Strain Anal., 1996, 31, p 299–314CrossRef
11.
Zurück zum Zitat F.R. Larson and J. Miller, A Time-Temperature Relationship for Rupture and Creep Stresses, Trans. ASME, 1952, 74, p 765–775 F.R. Larson and J. Miller, A Time-Temperature Relationship for Rupture and Creep Stresses, Trans. ASME, 1952, 74, p 765–775
12.
Zurück zum Zitat F.C. Monkman and N.J. Grant, An Empirical Relationship Between Rupture Life and Minimum Creep Rate in Creep-Rupture Tests, Proc. ASTM, 1956, 56, p 595–603 F.C. Monkman and N.J. Grant, An Empirical Relationship Between Rupture Life and Minimum Creep Rate in Creep-Rupture Tests, Proc. ASTM, 1956, 56, p 595–603
13.
Zurück zum Zitat G.F. Harrison and T. Homewood, The Application of the Graham and Walles Creep Equation to Aeroengine Superalloys, J Strain Anal., 1994, 29, p 177–184CrossRef G.F. Harrison and T. Homewood, The Application of the Graham and Walles Creep Equation to Aeroengine Superalloys, J Strain Anal., 1994, 29, p 177–184CrossRef
14.
Zurück zum Zitat B. Wilshire and P.J. Scharning, Theoretical and Practical Approaches to Creep of Waspaloy, Mater. Sci. Technol., 2009, 25, p 243–248CrossRef B. Wilshire and P.J. Scharning, Theoretical and Practical Approaches to Creep of Waspaloy, Mater. Sci. Technol., 2009, 25, p 243–248CrossRef
15.
Zurück zum Zitat H. Frost and M.F. Ashby, Deformation Mechanism Maps, Pergamon Press, Elmsford, 1982 H. Frost and M.F. Ashby, Deformation Mechanism Maps, Pergamon Press, Elmsford, 1982
16.
Zurück zum Zitat X.J. Wu and A.K. Koul, Grain Boundary Sliding in the Presence of Grain Boundary Precipitates during Transient Creep, Metall. Trans. A, 1995, 26A, p 905–913CrossRef X.J. Wu and A.K. Koul, Grain Boundary Sliding in the Presence of Grain Boundary Precipitates during Transient Creep, Metall. Trans. A, 1995, 26A, p 905–913CrossRef
17.
Zurück zum Zitat X.J. Wu and A.K. Koul, Grain Boundary Sliding at Serrated Grain Boundaries, Adv. Perform. Mater., 1997, 4, p 409–420CrossRef X.J. Wu and A.K. Koul, Grain Boundary Sliding at Serrated Grain Boundaries, Adv. Perform. Mater., 1997, 4, p 409–420CrossRef
18.
Zurück zum Zitat B.F. Dyson and M. McLean, Modelling the Effects of Damage and Microstructural Evolution on the Creep Behaviour of Engineering Alloys, J. Eng. Mater. Technol., 2000, 122, p 273–278CrossRef B.F. Dyson and M. McLean, Modelling the Effects of Damage and Microstructural Evolution on the Creep Behaviour of Engineering Alloys, J. Eng. Mater. Technol., 2000, 122, p 273–278CrossRef
19.
Zurück zum Zitat X.J. Wu and A.K. Koul, Modelling Creep in Complex Engineering Alloys, in Creep and Stress Relaxation in Miniature Structures and Components, The Metallurgical Society, Warrendale, PA, 1996, p 3–19 X.J. Wu and A.K. Koul, Modelling Creep in Complex Engineering Alloys, in Creep and Stress Relaxation in Miniature Structures and Components, The Metallurgical Society, Warrendale, PA, 1996, p 3–19
20.
Zurück zum Zitat B.F. Dyson and M. McLean, Particle-Coarsening, σ0 and Tertiary Creep, Acta Metall., 1983, 31, p 17–27CrossRef B.F. Dyson and M. McLean, Particle-Coarsening, σ0 and Tertiary Creep, Acta Metall., 1983, 31, p 17–27CrossRef
21.
Zurück zum Zitat B.F. Dyson and T.B. Gibbons, Tertiary Creep in Ni-Base Superalloys: Analysis of Experimental Data and Theoretical Synthesis, Acta Metall., 1987, 35, p 2355–2369CrossRef B.F. Dyson and T.B. Gibbons, Tertiary Creep in Ni-Base Superalloys: Analysis of Experimental Data and Theoretical Synthesis, Acta Metall., 1987, 35, p 2355–2369CrossRef
22.
Zurück zum Zitat T.G. Langdon, Grain Boundary Sliding as a Deformation Mechanism during Creep, Phil. Mag., 1970, 22, p 689–700CrossRef T.G. Langdon, Grain Boundary Sliding as a Deformation Mechanism during Creep, Phil. Mag., 1970, 22, p 689–700CrossRef
23.
Zurück zum Zitat J. Wadsworth, O.A. Ruano, and O.D. Sherby, Denuded Zones, Diffusional Creep, and Grain Boundary Sliding, Metall. Mater. Trans. A, 2002, 33A, p 219–229CrossRef J. Wadsworth, O.A. Ruano, and O.D. Sherby, Denuded Zones, Diffusional Creep, and Grain Boundary Sliding, Metall. Mater. Trans. A, 2002, 33A, p 219–229CrossRef
24.
Zurück zum Zitat T.M. Pollock and A.S. Argon, Creep Resistance of CMSX-3 Nickel Base Superalloy Single Crystals, Acta Metall. Mater., 1992, 40, p 1–30CrossRef T.M. Pollock and A.S. Argon, Creep Resistance of CMSX-3 Nickel Base Superalloy Single Crystals, Acta Metall. Mater., 1992, 40, p 1–30CrossRef
25.
Zurück zum Zitat C.F.M. Rae and R.C. Reed, Primary Creep in Single Crystal Superalloys: Origins, Mechanisms and Effects, Acta Mater., 2007, 55, p 1067–1081CrossRef C.F.M. Rae and R.C. Reed, Primary Creep in Single Crystal Superalloys: Origins, Mechanisms and Effects, Acta Mater., 2007, 55, p 1067–1081CrossRef
26.
Zurück zum Zitat A. Ma, D. Dye, and R.C. Reed, A Model for the Creep Deformation Behavior of Single-Crystal Superalloy CMSX-4, Acta Mater., 2008, 56, p 1657–1670CrossRef A. Ma, D. Dye, and R.C. Reed, A Model for the Creep Deformation Behavior of Single-Crystal Superalloy CMSX-4, Acta Mater., 2008, 56, p 1657–1670CrossRef
27.
Zurück zum Zitat S. Williams and D. Gong, private communication, 2010 S. Williams and D. Gong, private communication, 2010
28.
Zurück zum Zitat Z.H. Yao, M.C. Zhang, and J.X. Dong, Stress Rupture Fracture Model and Microstructure Evolution for Waspaloy, Metall. Mater. Trans A, 2011 (under review) Z.H. Yao, M.C. Zhang, and J.X. Dong, Stress Rupture Fracture Model and Microstructure Evolution for Waspaloy, Metall. Mater. Trans A, 2011 (under review)
Metadaten
Titel
A True-Stress Creep Model Based on Deformation Mechanisms for Polycrystalline Materials
verfasst von
Xijia Wu
Steve Williams
Diguang Gong
Publikationsdatum
01.11.2012
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 11/2012
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-012-0191-6

Weitere Artikel der Ausgabe 11/2012

Journal of Materials Engineering and Performance 11/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.