Skip to main content
Erschienen in: Photonic Network Communications 3/2021

13.11.2021 | Original Paper

A tunable nonlinear plasmonic multiplexer/demultiplexer device based on nanoscale ring resonators

Erschienen in: Photonic Network Communications | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The development of devices for communication networks to transmit information has become an active and growing field of research. Multiplexer/demultiplexer (M/D) is one of the basic devices in this field. In this paper, an M/D design is introduced based on the surface plasmon resonance in optical ring resonators. The number of inputs and outputs of M/D is 3 × 1 and 1 × 3, respectively. All parameters of the structure, including radius and width of ring resonators and waveguides, have been evaluated to obtain the optimal response. Also, we used the nonlinear gold property to expand the range of M/D performance and simulated the results for intensities less than 100 MW/cm2. Selectivity in the number of inputs and outputs, controllability using several parameters, all optically, selectivity in operation frequency, nanoscale size, reconfigurability, and integrated capability are the features of this design. In our simulation, we consider transmission and reflection of light in each port based on the finite difference time domain for evaluation of results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zaytsev, K.I., et al.: “Terahertz photonic crystal waveguides based on sapphire shaped crystals.” IEEE Trans. Tera. Sci. Tech. 6(4), 576–582 (2016)MathSciNetCrossRef Zaytsev, K.I., et al.: “Terahertz photonic crystal waveguides based on sapphire shaped crystals.” IEEE Trans. Tera. Sci. Tech. 6(4), 576–582 (2016)MathSciNetCrossRef
2.
Zurück zum Zitat Fu, M., et al.: Efficient terahertz modulator based on photoexcited graphene. Opt. Mater. 66, 381–385 (2017)CrossRef Fu, M., et al.: Efficient terahertz modulator based on photoexcited graphene. Opt. Mater. 66, 381–385 (2017)CrossRef
3.
Zurück zum Zitat Farmani, A., Mir, A., Sharifpour, Z.: Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos-Hänchen effect. Appl. Surf. Sci. 453, 358–364 (2018)CrossRef Farmani, A., Mir, A., Sharifpour, Z.: Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos-Hänchen effect. Appl. Surf. Sci. 453, 358–364 (2018)CrossRef
4.
Zurück zum Zitat Kersting, R., Strasser, G., Unterrainer, K.: Terahertz phase modulator. Nat. Photonics 36(13), 1156–1158 (2000) Kersting, R., Strasser, G., Unterrainer, K.: Terahertz phase modulator. Nat. Photonics 36(13), 1156–1158 (2000)
5.
Zurück zum Zitat Chen, H.-T., Padilla, W., Cich, M., Azad, A.K., Averitt, R.D., Taylor, A.: A metamaterial solid-state terahertz phase modulator. Nat. Photonics 3(3), 148–151 (2009)CrossRef Chen, H.-T., Padilla, W., Cich, M., Azad, A.K., Averitt, R.D., Taylor, A.: A metamaterial solid-state terahertz phase modulator. Nat. Photonics 3(3), 148–151 (2009)CrossRef
6.
Zurück zum Zitat Chen, C.-Y., Pan, C.-L., Hsieh, C.-F., Lin, Y.-F., Pan, R.-P.: Liquid-crystal-based terahertz tunable Lyot filter. Appl. Phys. Lett. 88(10), 101107 (2006)CrossRef Chen, C.-Y., Pan, C.-L., Hsieh, C.-F., Lin, Y.-F., Pan, R.-P.: Liquid-crystal-based terahertz tunable Lyot filter. Appl. Phys. Lett. 88(10), 101107 (2006)CrossRef
7.
Zurück zum Zitat Hashemi, M.R.M., Yang, S.-H., Wang, T., Sepúlveda, N., Jarrahi, M.: Electronically-controlled beam-steering through vanadium dioxide metasurfaces. Sci. Rep. 6, 35439 (2016)CrossRef Hashemi, M.R.M., Yang, S.-H., Wang, T., Sepúlveda, N., Jarrahi, M.: Electronically-controlled beam-steering through vanadium dioxide metasurfaces. Sci. Rep. 6, 35439 (2016)CrossRef
8.
Zurück zum Zitat Reichel, K.S., Mendis, R., Mittleman, D.M.: A broadband terahertz waveguide T-junction variable power splitter. Sci. Rep. 6, 28925 (2016)CrossRef Reichel, K.S., Mendis, R., Mittleman, D.M.: A broadband terahertz waveguide T-junction variable power splitter. Sci. Rep. 6, 28925 (2016)CrossRef
9.
Zurück zum Zitat Chen, C.-Y., Hsieh, C.-F., Lin, Y.-F., Pan, R.-P., Pan, C.-L.: Magnetically tunable room-temperature 2π liquid crystal terahertz phase shifter. Opt. Express 12(12), 2625–2630 (2004)CrossRef Chen, C.-Y., Hsieh, C.-F., Lin, Y.-F., Pan, R.-P., Pan, C.-L.: Magnetically tunable room-temperature 2π liquid crystal terahertz phase shifter. Opt. Express 12(12), 2625–2630 (2004)CrossRef
10.
Zurück zum Zitat Krumbholz, N., et al.: Omnidirectional terahertz mirrors: a key element for future terahertz communication systems. Appl. Phys. Lett. 88(20), 202905 (2006)CrossRef Krumbholz, N., et al.: Omnidirectional terahertz mirrors: a key element for future terahertz communication systems. Appl. Phys. Lett. 88(20), 202905 (2006)CrossRef
11.
Zurück zum Zitat Alipour, A., Farmani, A., Mir, A.: High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface. IEEE Sens. J. 18(17), 7047–7054 (2018)CrossRef Alipour, A., Farmani, A., Mir, A.: High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface. IEEE Sens. J. 18(17), 7047–7054 (2018)CrossRef
12.
Zurück zum Zitat Hosseini, A., Massoud, Y.: A low-loss metal-insulator-metal plasmonic bragg reflector. Opt. Express 14(23), 11318–11323 (2006)CrossRef Hosseini, A., Massoud, Y.: A low-loss metal-insulator-metal plasmonic bragg reflector. Opt. Express 14(23), 11318–11323 (2006)CrossRef
13.
Zurück zum Zitat Wang, G., Lu, H., Liu, X., Gong, Y.: Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating. Nanotechnology 23(44), 444009 (2012)CrossRef Wang, G., Lu, H., Liu, X., Gong, Y.: Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating. Nanotechnology 23(44), 444009 (2012)CrossRef
14.
Zurück zum Zitat Farmani, A., Zarifkar, A., Sheikhi, M.H., Miri, M.: Design of a tunable graphene plasmonic-on-white graphene switch at infrared range. Superlattices Microstruct. 112, 404–414 (2017)CrossRef Farmani, A., Zarifkar, A., Sheikhi, M.H., Miri, M.: Design of a tunable graphene plasmonic-on-white graphene switch at infrared range. Superlattices Microstruct. 112, 404–414 (2017)CrossRef
15.
Zurück zum Zitat Baqir, M., Farmani, A., Fatima, T., Raza, M., Shaukat, S., Mir, A.: Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range. Appl. Opt. 57(31), 9447–9454 (2018)CrossRef Baqir, M., Farmani, A., Fatima, T., Raza, M., Shaukat, S., Mir, A.: Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range. Appl. Opt. 57(31), 9447–9454 (2018)CrossRef
16.
Zurück zum Zitat Clark, A.W., Glidle, A., Cumming, D.R., Cooper, J.M.: Plasmonic split-ring resonators as dichroic nanophotonic DNA biosensors. J. Am. Chem. Soc. 131(48), 17615–17619 (2009)CrossRef Clark, A.W., Glidle, A., Cumming, D.R., Cooper, J.M.: Plasmonic split-ring resonators as dichroic nanophotonic DNA biosensors. J. Am. Chem. Soc. 131(48), 17615–17619 (2009)CrossRef
17.
Zurück zum Zitat Farmani, A., Yavarian, M., Alighanbari, A., Miri, M., Sheikhi, M.H.: Tunable graphene plasmonic Y-branch switch in the terahertz region using hexagonal boron nitride with electric and magnetic biasing. Appl. Opt. 56(32), 8931–8940 (2017)CrossRef Farmani, A., Yavarian, M., Alighanbari, A., Miri, M., Sheikhi, M.H.: Tunable graphene plasmonic Y-branch switch in the terahertz region using hexagonal boron nitride with electric and magnetic biasing. Appl. Opt. 56(32), 8931–8940 (2017)CrossRef
18.
Zurück zum Zitat Liu, D., Wang, J., Zhang, F., Pan, Y., Lu, J., Ni, X.: Tunable plasmonic band-pass filter with dual side-coupled circular ring resonators. Sensors 17(3), 585 (2017)CrossRef Liu, D., Wang, J., Zhang, F., Pan, Y., Lu, J., Ni, X.: Tunable plasmonic band-pass filter with dual side-coupled circular ring resonators. Sensors 17(3), 585 (2017)CrossRef
19.
Zurück zum Zitat Jeong, H.-H., et al.: Arrays of plasmonic nanoparticle dimers with defined nanogap spacers. ACS Nano 13(10), 11453–11459 (2019)CrossRef Jeong, H.-H., et al.: Arrays of plasmonic nanoparticle dimers with defined nanogap spacers. ACS Nano 13(10), 11453–11459 (2019)CrossRef
20.
Zurück zum Zitat Farmani, A., Mir, A.: Graphene sensor based on surface plasmon resonance for optical scanning. IEEE Photonics Technol. Lett. 31(8), 643–646 (2019)CrossRef Farmani, A., Mir, A.: Graphene sensor based on surface plasmon resonance for optical scanning. IEEE Photonics Technol. Lett. 31(8), 643–646 (2019)CrossRef
21.
Zurück zum Zitat Zhou, F., Du, W.: Ultrafast all-optical plasmonic graphene modulator. Appl. Opt. 57(23), 6645–6650 (2018)CrossRef Zhou, F., Du, W.: Ultrafast all-optical plasmonic graphene modulator. Appl. Opt. 57(23), 6645–6650 (2018)CrossRef
22.
Zurück zum Zitat Farmani, H., Farmani, A., Biglari, Z.: A label-free graphene-based nanosensor using surface plasmon resonance for biomaterials detection. Phys. E Low-dimens. Syst. Nanostruct. 116, 113730 (2020)CrossRef Farmani, H., Farmani, A., Biglari, Z.: A label-free graphene-based nanosensor using surface plasmon resonance for biomaterials detection. Phys. E Low-dimens. Syst. Nanostruct. 116, 113730 (2020)CrossRef
23.
Zurück zum Zitat Bai, N., et al.: Mode-division multiplexed transmission with inline few-mode fiber amplifier. Opt. Express 20(3), 2668–2680 (2012)CrossRef Bai, N., et al.: Mode-division multiplexed transmission with inline few-mode fiber amplifier. Opt. Express 20(3), 2668–2680 (2012)CrossRef
24.
Zurück zum Zitat Xie, Y., Fu, S., Zhang, M., Tang, M., Shum, P., Liu, D.: Optimization of few-mode-fiber based mode converter for mode division multiplexing transmission. Opt. Commun. 306, 185–189 (2013)CrossRef Xie, Y., Fu, S., Zhang, M., Tang, M., Shum, P., Liu, D.: Optimization of few-mode-fiber based mode converter for mode division multiplexing transmission. Opt. Commun. 306, 185–189 (2013)CrossRef
25.
Zurück zum Zitat Mohammadi, B., Soroosh, M., Kovsarian, A., Kavian, Y.S.: Improving the transmission efficiency in eight-channel all optical demultiplexers. Photon Netw. Commun. 38(1), 115–120 (2019)CrossRef Mohammadi, B., Soroosh, M., Kovsarian, A., Kavian, Y.S.: Improving the transmission efficiency in eight-channel all optical demultiplexers. Photon Netw. Commun. 38(1), 115–120 (2019)CrossRef
27.
Zurück zum Zitat Moreolo, M.S., Silvestri, F., Armellino, M., Hingerl, K., Cincotti, G.: Optimization of a 2D photonic crystal add/drop multiplexer based on contra-directional coupling. Photon. Nanostruct-Fundam. Appl. 4(3), 155–160 (2006)CrossRef Moreolo, M.S., Silvestri, F., Armellino, M., Hingerl, K., Cincotti, G.: Optimization of a 2D photonic crystal add/drop multiplexer based on contra-directional coupling. Photon. Nanostruct-Fundam. Appl. 4(3), 155–160 (2006)CrossRef
28.
Zurück zum Zitat Talebzadeh, R., Soroosh, M., Kavian, Y.S., Mehdizadeh, F.: All-optical 6-and 8-channel demultiplexers based on photonic crystal multilayer ring resonators in Si/C rods. Photon Netw. Commun. 34(2), 248–257 (2017)CrossRef Talebzadeh, R., Soroosh, M., Kavian, Y.S., Mehdizadeh, F.: All-optical 6-and 8-channel demultiplexers based on photonic crystal multilayer ring resonators in Si/C rods. Photon Netw. Commun. 34(2), 248–257 (2017)CrossRef
29.
Zurück zum Zitat Talebzadeh, R., Soroosh, M., Mehdizadeh, F.: Improved low channel spacing high quality factor fourchannel demultiplexer based on photonic crystal ring resonators. Opt. Appl. XLVI(4) (2016) Talebzadeh, R., Soroosh, M., Mehdizadeh, F.: Improved low channel spacing high quality factor fourchannel demultiplexer based on photonic crystal ring resonators. Opt. Appl. XLVI(4) (2016)
30.
Zurück zum Zitat Zayats, A.V., Smolyaninov, I.I., Maradudin, A.: Nano-optics of surface plasmon polaritons. Phys. Rep. 408(3–4), 131–314 (2005)CrossRef Zayats, A.V., Smolyaninov, I.I., Maradudin, A.: Nano-optics of surface plasmon polaritons. Phys. Rep. 408(3–4), 131–314 (2005)CrossRef
31.
Zurück zum Zitat Gramotnev, D.K., Bozhevolnyi, S.: Plasmonics beyond the diffraction limit. Nat. Photonics 4(2), 83 (2010)CrossRef Gramotnev, D.K., Bozhevolnyi, S.: Plasmonics beyond the diffraction limit. Nat. Photonics 4(2), 83 (2010)CrossRef
32.
Zurück zum Zitat Novotny, L., Van Hulst, N.: Antennas for light. Nat. Photonics 5(2), 83–90 (2011)CrossRef Novotny, L., Van Hulst, N.: Antennas for light. Nat. Photonics 5(2), 83–90 (2011)CrossRef
33.
Zurück zum Zitat Soukoulis, C.M., Wegener, M.: Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics 5(9), 523–530 (2011)CrossRef Soukoulis, C.M., Wegener, M.: Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics 5(9), 523–530 (2011)CrossRef
34.
Zurück zum Zitat Bana, X., Pang, X., Li, X., Huc, B., Guoa, Y., Zheng, H.: A nonlinear plasmonic waveguide based all-optical bidirectional switching. Opt. Commun. 406(1), 124–127 (2017) Bana, X., Pang, X., Li, X., Huc, B., Guoa, Y., Zheng, H.: A nonlinear plasmonic waveguide based all-optical bidirectional switching. Opt. Commun. 406(1), 124–127 (2017)
35.
Zurück zum Zitat Lin, X.-S., Huang, X.-G.: Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt. Lett. 33(23), 2874–2876 (2008)CrossRef Lin, X.-S., Huang, X.-G.: Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt. Lett. 33(23), 2874–2876 (2008)CrossRef
36.
Zurück zum Zitat Peng, X., Li, H., Wu, C., Cao, G., Liu, Z.: Research on transmission characteristics of aperture-coupled square-ring resonator based filter. Opt. Commun. 294, 368–371 (2013)CrossRef Peng, X., Li, H., Wu, C., Cao, G., Liu, Z.: Research on transmission characteristics of aperture-coupled square-ring resonator based filter. Opt. Commun. 294, 368–371 (2013)CrossRef
37.
Zurück zum Zitat Ding, X., et al.: Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. J. Am. Chem. Soc. 136(44), 15684–15693 (2014)CrossRef Ding, X., et al.: Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. J. Am. Chem. Soc. 136(44), 15684–15693 (2014)CrossRef
38.
Zurück zum Zitat Tao, J., Wang, Q., Huang, X.G.: All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material. Plasmonics 6(4), 753 (2011)CrossRef Tao, J., Wang, Q., Huang, X.G.: All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material. Plasmonics 6(4), 753 (2011)CrossRef
39.
Zurück zum Zitat Haus, H.A., Lai, Y.: Theory of cascaded quarter wave shifted distributed feedback resonators. IEEE J. Quantum Electron. 28(1), 205–213 (1992)CrossRef Haus, H.A., Lai, Y.: Theory of cascaded quarter wave shifted distributed feedback resonators. IEEE J. Quantum Electron. 28(1), 205–213 (1992)CrossRef
Metadaten
Titel
A tunable nonlinear plasmonic multiplexer/demultiplexer device based on nanoscale ring resonators
Publikationsdatum
13.11.2021
Erschienen in
Photonic Network Communications / Ausgabe 3/2021
Print ISSN: 1387-974X
Elektronische ISSN: 1572-8188
DOI
https://doi.org/10.1007/s11107-021-00953-9

Weitere Artikel der Ausgabe 3/2021

Photonic Network Communications 3/2021 Zur Ausgabe