Skip to main content

18.11.2024 | Connected Automated Vehicles and ITS

A Two-Stage Framework for CAV Platoon Formation Transformation

verfasst von: Wei Shan Yang, Yue Peng Chen, Yi Xin Su

Erschienen in: International Journal of Automotive Technology

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Connected automated vehicle (CAV) platooning transforms intelligent transportation systems but faces challenges in formation changes, including collision avoidance and external traffic interference. We propose a two-stage framework to address these issues. The offline stage employs an A*-based cooperative maneuver algorithm that uses a matrix-based formation representation and simplified vehicle maneuver rules to convert the formation search problem into an optimal path problem, generating discrete intermediate sequences. In the online stage, we introduce a formation-priority-based distributed model predictive control (DMPC) algorithm that maintains interaction consistency among vehicles by assigning priorities based on intermediate formation characteristics. To mitigate long priority chains, our method avoids unnecessary priority comparisons and employs a responsive collision avoidance strategy. Numerical simulations, including experiments with external disturbances, validate that our approach effectively plans intermediate formations. It shows a 9–15% optimality loss compared to centralized MPC and maintains optimality consistency while meeting real-time requirements compared to prioritized DMPC.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Alrifaee, B., et al. (2016). Coordinated non-cooperative distributed model predictive control for decoupled systems using graphs. IFAC-PapersOnLine, 49(22), 216–221.MathSciNetCrossRef Alrifaee, B., et al. (2016). Coordinated non-cooperative distributed model predictive control for decoupled systems using graphs. IFAC-PapersOnLine, 49(22), 216–221.MathSciNetCrossRef
Zurück zum Zitat Arai, H. et al. (2015). Optimal column subset selection by A-Star search. Proceedings of the AAAI Conference on Artificial Intelligence. Arai, H. et al. (2015). Optimal column subset selection by A-Star search. Proceedings of the AAAI Conference on Artificial Intelligence.
Zurück zum Zitat Badnava, S., et al. (2021). Platoon transitional maneuver control system: A review. IEEE Access, 9, 88327–88347.CrossRef Badnava, S., et al. (2021). Platoon transitional maneuver control system: A review. IEEE Access, 9, 88327–88347.CrossRef
Zurück zum Zitat Caruntu, C. F. et al. (2016). Distributed model predictive control for vehicle platooning: A brief survey. 2016 20th International Conference on System Theory, Control and Computing (ICSTCC). IEEE, pp. 644–650. Caruntu, C. F. et al. (2016). Distributed model predictive control for vehicle platooning: A brief survey. 2016 20th International Conference on System Theory, Control and Computing (ICSTCC). IEEE, pp. 644–650.
Zurück zum Zitat Chaloulos, G. et al. (2010). Distributed hierarchical MPC for conflict resolution in air traffic control. Proceedings of the 2010 American Control Conference. IEEE, pp. 3945–3950. Chaloulos, G. et al. (2010). Distributed hierarchical MPC for conflict resolution in air traffic control. Proceedings of the 2010 American Control Conference. IEEE, pp. 3945–3950.
Zurück zum Zitat Dasgupta, S. et al. (2017). Merging and splitting maneuver of platoons by means of a novel PID controller. 2017 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, pp. 1–8. Dasgupta, S. et al. (2017). Merging and splitting maneuver of platoons by means of a novel PID controller. 2017 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, pp. 1–8.
Zurück zum Zitat Deng, Z., Yang, K., Shen, W., & Shi, Y. (2023). Cooperative platoon formation of connected and autonomous vehicles: Toward efficient merging coordination at unsignalized intersections. IEEE Transactions on Intelligent Transportation Systems, 24(5), 5625–5639.CrossRef Deng, Z., Yang, K., Shen, W., & Shi, Y. (2023). Cooperative platoon formation of connected and autonomous vehicles: Toward efficient merging coordination at unsignalized intersections. IEEE Transactions on Intelligent Transportation Systems, 24(5), 5625–5639.CrossRef
Zurück zum Zitat Falcone, P. et al. (2007). A linear time varying model predictive control approach to the integrated vehicle dynamics control problem in autonomous systems. 2007 46th IEEE Conference on Decision and Control. IEEE, pp. 2980–2985. Falcone, P. et al. (2007). A linear time varying model predictive control approach to the integrated vehicle dynamics control problem in autonomous systems. 2007 46th IEEE Conference on Decision and Control. IEEE, pp. 2980–2985.
Zurück zum Zitat Farina, M., & Scattolini, R. (2012). Distributed predictive control: A non-cooperative algorithm with neighbor-to-neighbor communication for linear systems. Automatica, 48(6), 1088–1096.MathSciNetCrossRef Farina, M., & Scattolini, R. (2012). Distributed predictive control: A non-cooperative algorithm with neighbor-to-neighbor communication for linear systems. Automatica, 48(6), 1088–1096.MathSciNetCrossRef
Zurück zum Zitat Feng, S., et al. (2019). String stability for vehicular platoon control: Definitions and analysis methods. Annual Reviews in Control, 47, 81–97.MathSciNetCrossRef Feng, S., et al. (2019). String stability for vehicular platoon control: Definitions and analysis methods. Annual Reviews in Control, 47, 81–97.MathSciNetCrossRef
Zurück zum Zitat Goli, M., & Eskandarian, A. (2020). Merging strategies, trajectory planning and controls for platoon of connected, and autonomous vehicles. International Journal of Intelligent Transportation Systems Research, 18, 153–173.CrossRef Goli, M., & Eskandarian, A. (2020). Merging strategies, trajectory planning and controls for platoon of connected, and autonomous vehicles. International Journal of Intelligent Transportation Systems Research, 18, 153–173.CrossRef
Zurück zum Zitat Han, X., et al. (2020). Energy-aware trajectory optimization of CAV platoons through a signalized intersection. Transportation Research Part c: Emerging Technologies, 118, 102652.CrossRef Han, X., et al. (2020). Energy-aware trajectory optimization of CAV platoons through a signalized intersection. Transportation Research Part c: Emerging Technologies, 118, 102652.CrossRef
Zurück zum Zitat Hu, Q., & Luo, F. (2018). Review of secure communication approaches for in-vehicle network. International Journal of Automotive Technology, 19(5), 879–894.CrossRef Hu, Q., & Luo, F. (2018). Review of secure communication approaches for in-vehicle network. International Journal of Automotive Technology, 19(5), 879–894.CrossRef
Zurück zum Zitat Karbalaieali, S., et al. (2019). A dynamic adaptive algorithm for merging into platoons in connected automated environments. IEEE Transactions on Intelligent Transportation Systems, 21(10), 4111–4122.CrossRef Karbalaieali, S., et al. (2019). A dynamic adaptive algorithm for merging into platoons in connected automated environments. IEEE Transactions on Intelligent Transportation Systems, 21(10), 4111–4122.CrossRef
Zurück zum Zitat Kloock, M. et al. (2019). Distributed model predictive intersection control of multiple vehicles. 2019 IEEE intelligent transportation systems conference (ITSC). IEEE, pp. 1735–1740. Kloock, M. et al. (2019). Distributed model predictive intersection control of multiple vehicles. 2019 IEEE intelligent transportation systems conference (ITSC). IEEE, pp. 1735–1740.
Zurück zum Zitat Kuwata, Y., & How, J. P. (2010). Cooperative distributed robust trajectory optimization using receding horizon MILP. IEEE Transactions on Control Systems Technology, 19(2), 423–431.CrossRef Kuwata, Y., & How, J. P. (2010). Cooperative distributed robust trajectory optimization using receding horizon MILP. IEEE Transactions on Control Systems Technology, 19(2), 423–431.CrossRef
Zurück zum Zitat Li, Q., et al. (2022). A review of connected and automated vehicle platoon merging and splitting operations. IEEE Transactions on Intelligent Transportation Systems, 23(12), 22790–22806.CrossRef Li, Q., et al. (2022). A review of connected and automated vehicle platoon merging and splitting operations. IEEE Transactions on Intelligent Transportation Systems, 23(12), 22790–22806.CrossRef
Zurück zum Zitat Löfberg, J. (2004). YALMIP : A Toolbox for Modeling and Optimization in MATLAB. In Proceedings of the CACSD Conference. Taipei, Taiwan. Löfberg, J. (2004). YALMIP : A Toolbox for Modeling and Optimization in MATLAB. In Proceedings of the CACSD Conference. Taipei, Taiwan.
Zurück zum Zitat Maiti, S., et al. (2017). A conceptualization of vehicle platoons and platoon operations. Transportation Research Part c: Emerging Technologies, 80, 1–19.CrossRef Maiti, S., et al. (2017). A conceptualization of vehicle platoons and platoon operations. Transportation Research Part c: Emerging Technologies, 80, 1–19.CrossRef
Zurück zum Zitat Maiti, S., et al. (2019). The impact of flexible platoon formation operations. IEEE Transactions on Intelligent Vehicles, 5(2), 229–239.CrossRef Maiti, S., et al. (2019). The impact of flexible platoon formation operations. IEEE Transactions on Intelligent Vehicles, 5(2), 229–239.CrossRef
Zurück zum Zitat Qin, R. et al. (2021). Eco-driving speed optimization model of urban intelligent connected vehicle platoon considering driver’s comfort level. 2021 2nd International Conference on Electronics, Communications and Information Technology (CECIT). IEEE, pp. 532–537. Qin, R. et al. (2021). Eco-driving speed optimization model of urban intelligent connected vehicle platoon considering driver’s comfort level. 2021 2nd International Conference on Electronics, Communications and Information Technology (CECIT). IEEE, pp. 532–537.
Zurück zum Zitat Trodden, P., & Richards, A. (2013). Cooperative distributed MPC of linear systems with coupled constraints. Automatica, 49(2), 479–487.MathSciNetCrossRef Trodden, P., & Richards, A. (2013). Cooperative distributed MPC of linear systems with coupled constraints. Automatica, 49(2), 479–487.MathSciNetCrossRef
Zurück zum Zitat Wang, Y., et al. (2019). Review of trajectory optimisation for connected automated vehicles. IET Intelligent Transport Systems, 13(4), 580–586.CrossRef Wang, Y., et al. (2019). Review of trajectory optimisation for connected automated vehicles. IET Intelligent Transport Systems, 13(4), 580–586.CrossRef
Zurück zum Zitat Wang, Q., et al. (2020). Multi-vehicle trajectory design during cooperative adaptive cruise control platoon formation. Transportation Research Record, 2674(4), 30–41.CrossRef Wang, Q., et al. (2020). Multi-vehicle trajectory design during cooperative adaptive cruise control platoon formation. Transportation Research Record, 2674(4), 30–41.CrossRef
Zurück zum Zitat Wang, S., et al. (2023). Collision avoidance motion planning for connected and automated vehicle platoon merging and splitting with a hybrid automaton architecture. IEEE Transactions on Intelligent Transportation Systems, 25(2), 1445–1464.CrossRef Wang, S., et al. (2023). Collision avoidance motion planning for connected and automated vehicle platoon merging and splitting with a hybrid automaton architecture. IEEE Transactions on Intelligent Transportation Systems, 25(2), 1445–1464.CrossRef
Zurück zum Zitat Yang, W. et al. (2024). Integrated Spatial Kinematics–Dynamics Model Predictive Control for Collision-Free Autonomous Vehicle Tracking. Actuators. MDPI, 13 153. Yang, W. et al. (2024). Integrated Spatial Kinematics–Dynamics Model Predictive Control for Collision-Free Autonomous Vehicle Tracking. Actuators. MDPI, 13 153.
Metadaten
Titel
A Two-Stage Framework for CAV Platoon Formation Transformation
verfasst von
Wei Shan Yang
Yue Peng Chen
Yi Xin Su
Publikationsdatum
18.11.2024
Verlag
The Korean Society of Automotive Engineers
Erschienen in
International Journal of Automotive Technology
Print ISSN: 1229-9138
Elektronische ISSN: 1976-3832
DOI
https://doi.org/10.1007/s12239-024-00170-z