Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 10/2018

04.09.2018

A Two-Stage Physical-Based Model for Predicting Flow Stress of As-cast TiAl Alloy Under Hot Deformation Conditions

verfasst von: Jingyuan Shen, Zhanglong Zhao, Zekun Yao, Yongquan Ning, Yuhang Xiong, M. W. Fu

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 10/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The hot deformation behavior of Ti-30Al-4.2Mn-4.5Nb-0.2B alloy was investigated using the isothermal compression experiment at temperatures of 1020-1200 °C and strain rates of 0.001-1 s−1. The flow stress was sensitive to the deformation parameters like temperature and strain rate, which decreases with the increase in temperature and decrease in strain rates. Based on the true stress-true strain data, a two-stage physical-based model was proposed to describe the flow stress curve of as-cast TiAl alloy during hot deformation process. For establishing the model, at first, the flow curves of dynamic recovery (DRV) were modeled by employing stress-dislocation relation and adjusting dislocation annihilation coefficient Ω. Then, the flow curves of dynamic recrystallization (DRX) were modeled by considering the dynamic softening behavior into Avrami equation. Finally, the flow curves in the entire deformation stages could be described by embedding the predicted data of DRV model (i.e., flow stress before the critical strain) into the predicted data by DRX model (i.e., flow stress after the critical strain). The critical strain for initiation of DRX was determined by the double-differentiation method. To evaluate the applicability and effectiveness of DRX kinetics equation, the DRX curves were calculated and were consistent with the microstructure observation. Comparison between the experimental and predicted data shows that the proposed physical-based model can well forecast the flow stress under a wide working domain.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Zghal, M. Thomas, and A. Couret, Structural Transformations Activated during the Formation of the Lamellar Microstructure of TiAl Alloys, Intermetallics, 2005, 13(9), p 1008–1013CrossRef S. Zghal, M. Thomas, and A. Couret, Structural Transformations Activated during the Formation of the Lamellar Microstructure of TiAl Alloys, Intermetallics, 2005, 13(9), p 1008–1013CrossRef
2.
Zurück zum Zitat M. Yoshihara and Y.W. Kim, Oxidation Behavior of Gamma Alloys Designed for High Temperature Applications, Intermetallics, 2005, 13(9), p 952–958CrossRef M. Yoshihara and Y.W. Kim, Oxidation Behavior of Gamma Alloys Designed for High Temperature Applications, Intermetallics, 2005, 13(9), p 952–958CrossRef
3.
Zurück zum Zitat A.M. Hodge, L.M. Hsiung, and T.G. Nieh, Creep of Nearly Lamellar TiAl Alloy Containing W, Scripta Mater., 2004, 51(5), p 411–415CrossRef A.M. Hodge, L.M. Hsiung, and T.G. Nieh, Creep of Nearly Lamellar TiAl Alloy Containing W, Scripta Mater., 2004, 51(5), p 411–415CrossRef
4.
Zurück zum Zitat Z.W. Huang, Inhomogeneous Microstructure in Highly Alloyed Cast TiAl Based Alloys, Caused by Microsegregation, Scripta Mater., 2005, 52(10), p 1021–1025CrossRef Z.W. Huang, Inhomogeneous Microstructure in Highly Alloyed Cast TiAl Based Alloys, Caused by Microsegregation, Scripta Mater., 2005, 52(10), p 1021–1025CrossRef
5.
Zurück zum Zitat X. Lu, X.B. He, B. Zhang, X.H. Qu, L. Zhang, Z.X. Guo, and J.J. Tian, High-Temperature Oxidation Behavior of TiAl Alloys Fabricated by Spark Plasma Sintering, J. Alloys Compd., 2009, 478(1), p 220–225CrossRef X. Lu, X.B. He, B. Zhang, X.H. Qu, L. Zhang, Z.X. Guo, and J.J. Tian, High-Temperature Oxidation Behavior of TiAl Alloys Fabricated by Spark Plasma Sintering, J. Alloys Compd., 2009, 478(1), p 220–225CrossRef
6.
Zurück zum Zitat Y.H. Wang, J.P. Lin, X.J. Xu, Y.H. He, Y.L. Wang, and G.L. Chen, Effect of Fabrication Process on Microstructure of High Nb Containing TiAl Alloy, J. Alloys Compd., 2008, 458(1), p 313–317CrossRef Y.H. Wang, J.P. Lin, X.J. Xu, Y.H. He, Y.L. Wang, and G.L. Chen, Effect of Fabrication Process on Microstructure of High Nb Containing TiAl Alloy, J. Alloys Compd., 2008, 458(1), p 313–317CrossRef
7.
Zurück zum Zitat X.M. He, Z.Q. Yu, G.M. Liu, W.G. Wang, and X.M. Lai, Mathematical Modeling for High Temperature Flow Behavior of As-Cast Ti-45Al-8.5Nb-(W, B, Y) Alloy, Mater. Des., 2009, 30(1), p 166–169CrossRef X.M. He, Z.Q. Yu, G.M. Liu, W.G. Wang, and X.M. Lai, Mathematical Modeling for High Temperature Flow Behavior of As-Cast Ti-45Al-8.5Nb-(W, B, Y) Alloy, Mater. Des., 2009, 30(1), p 166–169CrossRef
8.
Zurück zum Zitat Y.Y. Chen, F. Yang, F.T. Kong, and S.L. Xiao, Microstructure, Mechanical Properties, Hot Deformation and Oxidation Behavior of Ti-45Al-5.4 V-3.6Nb-0.3Y Alloy, J. Alloys Compd., 2010, 498(1), p 95–101CrossRef Y.Y. Chen, F. Yang, F.T. Kong, and S.L. Xiao, Microstructure, Mechanical Properties, Hot Deformation and Oxidation Behavior of Ti-45Al-5.4 V-3.6Nb-0.3Y Alloy, J. Alloys Compd., 2010, 498(1), p 95–101CrossRef
9.
Zurück zum Zitat X.H. Wu, Review of Alloy and Process Development of TiAl Alloys, Intermetallics, 2006, 14(10–11), p 1114–1122CrossRef X.H. Wu, Review of Alloy and Process Development of TiAl Alloys, Intermetallics, 2006, 14(10–11), p 1114–1122CrossRef
10.
Zurück zum Zitat S.L. Semiatin, V. Seetharaman, and I. Weiss, Hot Workability of Titanium and Titanium Aluminide Alloys-an Overview, Mater. Sci. Eng., A, 1998, 243(1–2), p 1–24CrossRef S.L. Semiatin, V. Seetharaman, and I. Weiss, Hot Workability of Titanium and Titanium Aluminide Alloys-an Overview, Mater. Sci. Eng., A, 1998, 243(1–2), p 1–24CrossRef
11.
Zurück zum Zitat J. Liu, Z.S. Cui, and C.X. Li, Modelling of Flow Stress Characterizing Dynamic Recrystallization for Magnesium Alloy AZ31B, Comput. Mater. Sci., 2008, 41(3), p 375–382CrossRef J. Liu, Z.S. Cui, and C.X. Li, Modelling of Flow Stress Characterizing Dynamic Recrystallization for Magnesium Alloy AZ31B, Comput. Mater. Sci., 2008, 41(3), p 375–382CrossRef
12.
Zurück zum Zitat R. Ebrahimi, S.H. Zahiri, and A. Najafizadeh, Mathematical Modelling of the Stress-strain Curves of Ti-IF Steel at High Temperature, J. Mater. Process. Technol., 2006, 171(2), p 301–305CrossRef R. Ebrahimi, S.H. Zahiri, and A. Najafizadeh, Mathematical Modelling of the Stress-strain Curves of Ti-IF Steel at High Temperature, J. Mater. Process. Technol., 2006, 171(2), p 301–305CrossRef
13.
Zurück zum Zitat Y.H. Wang, J.P. Lin, Y.H. He, Y.L. Wang, and G.L. Chen, Microstructure and Mechanical Properties of as-cast Ti-45Al-8.5Nb-(W, B, Y) Alloy with Industrial Scale, Mater. Sci. Eng., A, 2007, 471(1–2), p 82–87CrossRef Y.H. Wang, J.P. Lin, Y.H. He, Y.L. Wang, and G.L. Chen, Microstructure and Mechanical Properties of as-cast Ti-45Al-8.5Nb-(W, B, Y) Alloy with Industrial Scale, Mater. Sci. Eng., A, 2007, 471(1–2), p 82–87CrossRef
14.
Zurück zum Zitat Z.C. Liu, J.P. Lin, Y.L. Wang, Z. Lin, G.L. Chen, and K.M. Chang, High Temperature Deformation Behaviour of As-cast Ti-46Al-8.5Nb-0.2 W Alloy, Mater. Lett., 2004, 58(6), p 948–952CrossRef Z.C. Liu, J.P. Lin, Y.L. Wang, Z. Lin, G.L. Chen, and K.M. Chang, High Temperature Deformation Behaviour of As-cast Ti-46Al-8.5Nb-0.2 W Alloy, Mater. Lett., 2004, 58(6), p 948–952CrossRef
15.
Zurück zum Zitat C. Sellars and W.M. Tegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14(9), p 1136–1138CrossRef C. Sellars and W.M. Tegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14(9), p 1136–1138CrossRef
16.
Zurück zum Zitat Y.C. Lin, M.S. Chen, and J. Zhong, Constitutive Modeling for Elevated Temperature Flow Behavior of 42CrMo Steel, Comput. Mater. Sci., 2008, 42(3), p 470–477CrossRef Y.C. Lin, M.S. Chen, and J. Zhong, Constitutive Modeling for Elevated Temperature Flow Behavior of 42CrMo Steel, Comput. Mater. Sci., 2008, 42(3), p 470–477CrossRef
17.
Zurück zum Zitat D. Samantaray, S. Mandal, and A.K. Bhaduri, A Comparative Study on Johnson Cook, Modified Zerilli–Armstrong and Arrhenius-Type Constitutive Models to Predict Elevated Temperature Flow Behaviour in Modified 9Cr-1Mo Steel, Comput. Mater. Sci., 2009, 47(2), p 568–576CrossRef D. Samantaray, S. Mandal, and A.K. Bhaduri, A Comparative Study on Johnson Cook, Modified Zerilli–Armstrong and Arrhenius-Type Constitutive Models to Predict Elevated Temperature Flow Behaviour in Modified 9Cr-1Mo Steel, Comput. Mater. Sci., 2009, 47(2), p 568–576CrossRef
18.
Zurück zum Zitat Y.C. Lin, X.M. Chen, D.X. Wen, and M.S. Chen, A Physically-Based Constitutive Model for a Typical Nickel-Based Superalloy, Comp. Mater. Sci., 2014, 83(2), p 282–289CrossRef Y.C. Lin, X.M. Chen, D.X. Wen, and M.S. Chen, A Physically-Based Constitutive Model for a Typical Nickel-Based Superalloy, Comp. Mater. Sci., 2014, 83(2), p 282–289CrossRef
19.
Zurück zum Zitat G.L. Ji, Q. Li, L. Li, and A. Physical-based, Constitutive Relation to Predict Flow Stress for Cu-0.4Mg Alloy During Hot Working, Mater. Sci. Eng., A, 2014, 615, p 254–274CrossRef G.L. Ji, Q. Li, L. Li, and A. Physical-based, Constitutive Relation to Predict Flow Stress for Cu-0.4Mg Alloy During Hot Working, Mater. Sci. Eng., A, 2014, 615, p 254–274CrossRef
20.
Zurück zum Zitat L. Cheng, X.Y. Xue, B. Tang, H. Kou, and J. Li, Flow Characteristics and Constitutive Modeling for Elevated Temperature Deformation of a High Nb Containing TiAl Alloy, Intermetallics, 2014, 49(4), p 23–28CrossRef L. Cheng, X.Y. Xue, B. Tang, H. Kou, and J. Li, Flow Characteristics and Constitutive Modeling for Elevated Temperature Deformation of a High Nb Containing TiAl Alloy, Intermetallics, 2014, 49(4), p 23–28CrossRef
21.
Zurück zum Zitat Z.P. Wan, Y. Sun, L.X. Hu, and H. Yu, Dynamic Softening Behavior and Microstructural Characterization of TiAl-based Alloy during Hot Deformation, Mater. Charact., 2017, 130, p 25–32CrossRef Z.P. Wan, Y. Sun, L.X. Hu, and H. Yu, Dynamic Softening Behavior and Microstructural Characterization of TiAl-based Alloy during Hot Deformation, Mater. Charact., 2017, 130, p 25–32CrossRef
22.
Zurück zum Zitat F.D. Fischer, T. Waitz, C. Scheu, L. Cha, G. Dehm, T. Antretter, and H. Clemens, Study of Nanometer-scaled Lamellar Microstructure in a Ti-45Al-7.5Nb Alloy-Experiments and Modeling, Intermetallics, 2010, 18(4), p 509–517CrossRef F.D. Fischer, T. Waitz, C. Scheu, L. Cha, G. Dehm, T. Antretter, and H. Clemens, Study of Nanometer-scaled Lamellar Microstructure in a Ti-45Al-7.5Nb Alloy-Experiments and Modeling, Intermetallics, 2010, 18(4), p 509–517CrossRef
23.
Zurück zum Zitat Y.Q. Ning, X. Luo, H.Q. Liang, H.Z. Guo, J.L. Zhang, and K. Tan, Competition between Dynamic Recovery and Recrystallization during Hot Deformation for TC18 Titanium Alloy, Mater. Sci. Eng., A, 2015, 635, p 77–85CrossRef Y.Q. Ning, X. Luo, H.Q. Liang, H.Z. Guo, J.L. Zhang, and K. Tan, Competition between Dynamic Recovery and Recrystallization during Hot Deformation for TC18 Titanium Alloy, Mater. Sci. Eng., A, 2015, 635, p 77–85CrossRef
24.
Zurück zum Zitat F. Montheillet, O. Lurdos, and G. Damamme, A Grain Scale Approach for Modeling Steady-State Discontinuous Dynamic Recrystallization, Acta Mater., 2009, 57, p 1602–1612CrossRef F. Montheillet, O. Lurdos, and G. Damamme, A Grain Scale Approach for Modeling Steady-State Discontinuous Dynamic Recrystallization, Acta Mater., 2009, 57, p 1602–1612CrossRef
25.
Zurück zum Zitat Y.Q. Ning, B.C. Xie, H.Q. Liang, H. Li, X.M. Yang, and H.Z. Guo, Dynamic Softening Behavior of TC18 Titanium Alloy During Hot Deformation, Mater. Des., 2015, 71, p 68–77CrossRef Y.Q. Ning, B.C. Xie, H.Q. Liang, H. Li, X.M. Yang, and H.Z. Guo, Dynamic Softening Behavior of TC18 Titanium Alloy During Hot Deformation, Mater. Des., 2015, 71, p 68–77CrossRef
26.
Zurück zum Zitat Y. Sun, L. Hu, and J. Ren, Modeling the Constitutive Relationship of Powder Metallurgy Ti-47Al-2Nb-2Cr Alloy During Hot Deformation, J. Mater. Eng. Perform., 2015, 24(3), p 1–9CrossRef Y. Sun, L. Hu, and J. Ren, Modeling the Constitutive Relationship of Powder Metallurgy Ti-47Al-2Nb-2Cr Alloy During Hot Deformation, J. Mater. Eng. Perform., 2015, 24(3), p 1–9CrossRef
27.
Zurück zum Zitat M. Ahmadi, S.R. Hosseini, and S.M.M. Hadavi, Effects of Heat Treatment on Microstructural Modification of As-Cast Gamma-TiAl Alloy, J. Mater. Eng. Perform., 2016, 25(6), p 2138–2146CrossRef M. Ahmadi, S.R. Hosseini, and S.M.M. Hadavi, Effects of Heat Treatment on Microstructural Modification of As-Cast Gamma-TiAl Alloy, J. Mater. Eng. Perform., 2016, 25(6), p 2138–2146CrossRef
28.
Zurück zum Zitat J.J. Jonas, X. Quelennec, L. Jiang, and E. Martin, The Avrami Kinetics of Dynamic Recrystallization, Acta Mater., 1996, 572(9), p 2748–2756CrossRef J.J. Jonas, X. Quelennec, L. Jiang, and E. Martin, The Avrami Kinetics of Dynamic Recrystallization, Acta Mater., 1996, 572(9), p 2748–2756CrossRef
29.
Zurück zum Zitat Y. Bergstrom, A Dislocation Model for the Stress-strain Behaviour of Polycrystalline α-Fe with Special Emphasis on the Variation of the Densities of Mobile and Immobile Dislocations, Mater. Sci. Eng., A, 1970, 5, p 193–200CrossRef Y. Bergstrom, A Dislocation Model for the Stress-strain Behaviour of Polycrystalline α-Fe with Special Emphasis on the Variation of the Densities of Mobile and Immobile Dislocations, Mater. Sci. Eng., A, 1970, 5, p 193–200CrossRef
30.
Zurück zum Zitat H.Q. Liang, H.Z. Guo, Y. Nan, C. Qin, X.N. Peng, and J.L. Zhang, The Construction of Constitutive Model and Identification of Dynamic Softening Mechanism of High-temperature Deformation of Ti-5Al-5Mo-5V-1Cr-1Fe Alloy, Mater. Sci. Eng., A, 2014, 615, p 42–50CrossRef H.Q. Liang, H.Z. Guo, Y. Nan, C. Qin, X.N. Peng, and J.L. Zhang, The Construction of Constitutive Model and Identification of Dynamic Softening Mechanism of High-temperature Deformation of Ti-5Al-5Mo-5V-1Cr-1Fe Alloy, Mater. Sci. Eng., A, 2014, 615, p 42–50CrossRef
31.
Zurück zum Zitat E.I. Poliak and J.J. Jonas, A One-parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization, Acta Mater., 1996, 44(1), p 127–136CrossRef E.I. Poliak and J.J. Jonas, A One-parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization, Acta Mater., 1996, 44(1), p 127–136CrossRef
32.
Zurück zum Zitat Y.C. Lin, M.S. Chen, and J. Zhong, Modeling of Flow Stress of 42CrMo Steel under Hot Compression, Mater. Sci. Eng., A, 2009, 499, p 88–92CrossRef Y.C. Lin, M.S. Chen, and J. Zhong, Modeling of Flow Stress of 42CrMo Steel under Hot Compression, Mater. Sci. Eng., A, 2009, 499, p 88–92CrossRef
33.
Zurück zum Zitat L. Wang, F. Liu, Q. Zuo, and C.F. Chen, Prediction of Flow Stress for N08028 Alloy under Hot Working Conditions, Mater. Des., 2013, 47, p 737–745CrossRef L. Wang, F. Liu, Q. Zuo, and C.F. Chen, Prediction of Flow Stress for N08028 Alloy under Hot Working Conditions, Mater. Des., 2013, 47, p 737–745CrossRef
34.
Zurück zum Zitat S.I. Kim and Y.C. Yoo, Dynamic Recrystallization Behavior of AISI, 304 Stainless Steel, Mater. Sci. Eng., A, 2001, 311, p 108–113CrossRef S.I. Kim and Y.C. Yoo, Dynamic Recrystallization Behavior of AISI, 304 Stainless Steel, Mater. Sci. Eng., A, 2001, 311, p 108–113CrossRef
35.
Zurück zum Zitat R.M. Imayev, V.M. Imayev, M. Oehring, and F. Apple, Microstructural Evolution During Hot Working of Ti Aluminide Alloys: Influence of Phase Constitution and Initial Casting Texture, Metall. Mater. Trans. A, 2005, 36(3), p 859–867CrossRef R.M. Imayev, V.M. Imayev, M. Oehring, and F. Apple, Microstructural Evolution During Hot Working of Ti Aluminide Alloys: Influence of Phase Constitution and Initial Casting Texture, Metall. Mater. Trans. A, 2005, 36(3), p 859–867CrossRef
Metadaten
Titel
A Two-Stage Physical-Based Model for Predicting Flow Stress of As-cast TiAl Alloy Under Hot Deformation Conditions
verfasst von
Jingyuan Shen
Zhanglong Zhao
Zekun Yao
Yongquan Ning
Yuhang Xiong
M. W. Fu
Publikationsdatum
04.09.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 10/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3618-x

Weitere Artikel der Ausgabe 10/2018

Journal of Materials Engineering and Performance 10/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.