Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 6/2019

10.01.2019 | Research Paper

A two-step optimization scheme based on equivalent stiffness parameters for forcing convexity of fiber winding angle in composite frames

verfasst von: Zunyi Duan, Jun Yan, Ikjin Lee, Erik Lund, Jingyuan Wang

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

For stiffness design optimization of composite frame structures, one of the major problems when using fiber winding angles as design variables directly is the lack of convexity of the objective function, which may lead to different local optima depending on initial designs when a traditional gradient-based optimization algorithm is applied. Therefore, the present paper adopts a gradient-based two-step optimization scheme to cope with the difficulty and search for a better optimal design of composite frames in which the fiber winding angles are taken as design variables. To realize the two-step optimization scheme, the equivalent stiffness parameters of a composite beam with circular cross-section are derived in explicit expressions and used to force the convexity of the design optimization of the composite frame. The stiffness matrices are linearly expressed in terms of the stiffness parameters, which guarantee the convexity of the design variable feasible region in the stiffness parameter space. The equivalent stiffness parameters are adopted to keep invariance of physical quantities between fiber winding angle and equivalent stiffness parameter spaces. In the two-step optimization scheme, the minimum identification problem with the constraint that the objective function at the new starting point is less than or equal to the previous objective function at the optimum point in fiber winding angle space is established. Then, the two-step optimization scheme can be implemented in the fiber winding angle and structural equivalent stiffness parameter spaces, respectively, until the minimum identification problem is not possible to identify a new starting point. The proposed two-step optimization scheme for composite frames fully takes advantage of the stiffness parameters in convexity and fiber winding angles as practically physical quantities, respectively. The sensitivity information of the objective function with respect to fiber winding angles and equivalent stiffness parameters is derived by the analytical sensitivity analysis method. Numerical examples show that the two-step optimization scheme can effectively force convexity of the optimization model and help to eliminate the initial design dependency. The effectiveness of the proposed two-step scheme is further verified through the particle swarm optimization (PSO) algorithm which is an evolutionary algorithm with global optimization capability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdalla MM, Setoodeh S, Gürdal Z (2007) Design of variable stiffness composite panels for maximum fundamental frequency using lamination parameters. Compos Struct 81(2):283–291 Abdalla MM, Setoodeh S, Gürdal Z (2007) Design of variable stiffness composite panels for maximum fundamental frequency using lamination parameters. Compos Struct 81(2):283–291
Zurück zum Zitat An H, Chen S, Huang H (2015) Simultaneous optimization of stacking sequences and sizing with two-level approximations and a genetic algorithm. Compos Struct 123:180–189CrossRef An H, Chen S, Huang H (2015) Simultaneous optimization of stacking sequences and sizing with two-level approximations and a genetic algorithm. Compos Struct 123:180–189CrossRef
Zurück zum Zitat Andersen ED, Roos C, Terlaky T (2003) On implementing a primal-dual interior-point method for conic quadratic optimization. Math Program 95(2):249–277MathSciNetCrossRefMATH Andersen ED, Roos C, Terlaky T (2003) On implementing a primal-dual interior-point method for conic quadratic optimization. Math Program 95(2):249–277MathSciNetCrossRefMATH
Zurück zum Zitat Aymerich F, Serra M (2008) Optimization of laminate stacking sequence for maximum buckling load using the ant colony optimization (ACO) metaheuristic. Compos A: Appl Sci Manuf 39(2):262–272CrossRef Aymerich F, Serra M (2008) Optimization of laminate stacking sequence for maximum buckling load using the ant colony optimization (ACO) metaheuristic. Compos A: Appl Sci Manuf 39(2):262–272CrossRef
Zurück zum Zitat Bakis CE, Bank LC, Brown VL, Cosenza E, Davalos JF, Lesko JJ, Machida A, Rizkalla SH, Triantafillou TC (2002) Fiber-reinforced polymer composites for construction—state-of-the-art review. J Compos Constr 6(2):73–87CrossRef Bakis CE, Bank LC, Brown VL, Cosenza E, Davalos JF, Lesko JJ, Machida A, Rizkalla SH, Triantafillou TC (2002) Fiber-reinforced polymer composites for construction—state-of-the-art review. J Compos Constr 6(2):73–87CrossRef
Zurück zum Zitat Bendsoe MP, Sigmund O (2003) Topology Optimization-Theory, Methods and Applications. Springer, New York Bendsoe MP, Sigmund O (2003) Topology Optimization-Theory, Methods and Applications. Springer, New York
Zurück zum Zitat Birge B (2003) PSOt - a particle swarm optimization toolbox for use with Matlab. SIS 3:973–990 Birge B (2003) PSOt - a particle swarm optimization toolbox for use with Matlab. SIS 3:973–990
Zurück zum Zitat Bloomfield MW, Diaconu CG, Weaver PM (2009) On feasible regions of lamination parameters for lay-up optimization of laminated composites. Proceedings of the Royal Society of London a: Mathematical, Physical and Engineering Sciences, 465: 1123–1143 Bloomfield MW, Diaconu CG, Weaver PM (2009) On feasible regions of lamination parameters for lay-up optimization of laminated composites. Proceedings of the Royal Society of London a: Mathematical, Physical and Engineering Sciences, 465: 1123–1143
Zurück zum Zitat Bohrer RZG, Almeida SFM, Donadon MV (2015) Optimization of composite plates subjected to buckling and small mass impact using lamination parameters. Compos Struct 120:141–152 Bohrer RZG, Almeida SFM, Donadon MV (2015) Optimization of composite plates subjected to buckling and small mass impact using lamination parameters. Compos Struct 120:141–152
Zurück zum Zitat Bruyneel M (2011) SFP - a new parameterization based on shape functions for optimal material selection: application to conventional composite plies. Struct Multidiscip Optim 43(1):17–27CrossRef Bruyneel M (2011) SFP - a new parameterization based on shape functions for optimal material selection: application to conventional composite plies. Struct Multidiscip Optim 43(1):17–27CrossRef
Zurück zum Zitat Bruyneel M, Fleury C (2002) Composite structures optimization using sequential convex programming. Adv Eng Softw 33(7):697–711CrossRefMATH Bruyneel M, Fleury C (2002) Composite structures optimization using sequential convex programming. Adv Eng Softw 33(7):697–711CrossRefMATH
Zurück zum Zitat Byrd RH, Gilbert JC, Nocedal J (2000) A trust region method based on interior point techniques for nonlinear programming. Math Program 89(1):149–185MathSciNetCrossRefMATH Byrd RH, Gilbert JC, Nocedal J (2000) A trust region method based on interior point techniques for nonlinear programming. Math Program 89(1):149–185MathSciNetCrossRefMATH
Zurück zum Zitat Chang N, Wang W, Yang W, Wang J (2010) Ply stacking sequence optimization of composite laminate by permutation discrete particle swarm optimization. Struct Multidiscip Optim 41(2):179–187CrossRef Chang N, Wang W, Yang W, Wang J (2010) Ply stacking sequence optimization of composite laminate by permutation discrete particle swarm optimization. Struct Multidiscip Optim 41(2):179–187CrossRef
Zurück zum Zitat Cook RD, Malkus DS, Plesha ME, Witt RJ (2002) Concepts and applications of finite element analysis, Fourth Edition. John Wiley & Sons, New York Cook RD, Malkus DS, Plesha ME, Witt RJ (2002) Concepts and applications of finite element analysis, Fourth Edition. John Wiley & Sons, New York
Zurück zum Zitat Davalos JF, Kim Y, Barbero EJ (1994) Analysis of laminated beams with a layer-wise constant shear theory. Compos Struct 28(3):241–253CrossRef Davalos JF, Kim Y, Barbero EJ (1994) Analysis of laminated beams with a layer-wise constant shear theory. Compos Struct 28(3):241–253CrossRef
Zurück zum Zitat Deng S, Pai PF, Lai CC (2005) A solution to the stacking sequence of a composite laminate plate with constant thickness using simulated annealing algorithms. Int J Adv Manuf Technol 26(5–6):499–504CrossRef Deng S, Pai PF, Lai CC (2005) A solution to the stacking sequence of a composite laminate plate with constant thickness using simulated annealing algorithms. Int J Adv Manuf Technol 26(5–6):499–504CrossRef
Zurück zum Zitat Diaconu CG, Sato M, Sekine H (2002) Buckling characteristics and layup optimization of long laminated composite cylindrical shells subjected to combined loads using lamination parameters. Compos Struct 58(4):423–433CrossRef Diaconu CG, Sato M, Sekine H (2002) Buckling characteristics and layup optimization of long laminated composite cylindrical shells subjected to combined loads using lamination parameters. Compos Struct 58(4):423–433CrossRef
Zurück zum Zitat Duan ZY, Yan J, Lee IJ, Wang, JY, Yu T (2018) Integrated design optimization of composite frames and materials for maximum fundamental frequency with continuous fiber winding angles. Acta Mech Sinica 34(6):1084–1094 Duan ZY, Yan J, Lee IJ, Wang, JY, Yu T (2018) Integrated design optimization of composite frames and materials for maximum fundamental frequency with continuous fiber winding angles. Acta Mech Sinica 34(6):1084–1094
Zurück zum Zitat Faria AR (2015) Optimization of composite structures under multiple load cases using a discrete approach based on lamination parameters. Int J Numer Methods Eng 104(9):827–843MathSciNetCrossRefMATH Faria AR (2015) Optimization of composite structures under multiple load cases using a discrete approach based on lamination parameters. Int J Numer Methods Eng 104(9):827–843MathSciNetCrossRefMATH
Zurück zum Zitat Ferreira RT, Rodrigues HC, Guedes JM, Hernandes JA (2014) Hierarchical optimization of laminated fiber reinforced composites. Compos Struct 107:246–259CrossRef Ferreira RT, Rodrigues HC, Guedes JM, Hernandes JA (2014) Hierarchical optimization of laminated fiber reinforced composites. Compos Struct 107:246–259CrossRef
Zurück zum Zitat Foldager J (1997) Design optimization of laminated composite plates divided into rectangular patches with use of lamination parameters, In: Gutkowski W and Mroz Z (eds): Proc WCSMO 2-second world congress of structural and multidisciplinary optimization, Inst of Fundamental Technological Research, Warsaw, Vol 2, 669–675 Foldager J (1997) Design optimization of laminated composite plates divided into rectangular patches with use of lamination parameters, In: Gutkowski W and Mroz Z (eds): Proc WCSMO 2-second world congress of structural and multidisciplinary optimization, Inst of Fundamental Technological Research, Warsaw, Vol 2, 669–675
Zurück zum Zitat Foldager J, Hansen JS, Olhoff N (1998) A general approach forcing convexity of ply angle optimization in composite laminates. Struct Optim 16(2–3):201–211CrossRef Foldager J, Hansen JS, Olhoff N (1998) A general approach forcing convexity of ply angle optimization in composite laminates. Struct Optim 16(2–3):201–211CrossRef
Zurück zum Zitat Fukunaga H, Vanderplaats GN (1991) Strength optimization of laminated composites with respect to layer thickness and/or layer orientation angle. Comput Struct 40(6):1429–1439 Fukunaga H, Vanderplaats GN (1991) Strength optimization of laminated composites with respect to layer thickness and/or layer orientation angle. Comput Struct 40(6):1429–1439
Zurück zum Zitat Fukunaga H, Sekine H (1992) Stiffness design method of symmetrical laminates using lamination parameters. AIAA J 30(11):2791–2793CrossRef Fukunaga H, Sekine H (1992) Stiffness design method of symmetrical laminates using lamination parameters. AIAA J 30(11):2791–2793CrossRef
Zurück zum Zitat Ganguli R (2013) Optimal design of composite structures: a historical review. J Indian Inst Sci 93(4):557–570 Ganguli R (2013) Optimal design of composite structures: a historical review. J Indian Inst Sci 93(4):557–570
Zurück zum Zitat Gao T, Zhang WH, Duysinx P (2012) A bi-value coding parameterization scheme for the discrete optimal orientation design of the composite laminate. Int J Numer Methods Eng 91(1):98–114CrossRefMATH Gao T, Zhang WH, Duysinx P (2012) A bi-value coding parameterization scheme for the discrete optimal orientation design of the composite laminate. Int J Numer Methods Eng 91(1):98–114CrossRefMATH
Zurück zum Zitat Ghiasi H, Pasini D, Lessard L (2009) Optimum stacking sequence design of composite materials Part I: constant stiffness design. Compos Struct 90(1):1–11CrossRef Ghiasi H, Pasini D, Lessard L (2009) Optimum stacking sequence design of composite materials Part I: constant stiffness design. Compos Struct 90(1):1–11CrossRef
Zurück zum Zitat Ghiasi H, Fayazbakhsh K, Pasini D, Lessard L (2010) Optimum stacking sequence design of composite materials Part II: variable stiffness design. Compos Struct 93(1):1–13CrossRef Ghiasi H, Fayazbakhsh K, Pasini D, Lessard L (2010) Optimum stacking sequence design of composite materials Part II: variable stiffness design. Compos Struct 93(1):1–13CrossRef
Zurück zum Zitat Gomes FA, Senne TA (2011) An SLP algorithm and its application to topology optimization. Comput Appl Math 30(1):53–89MathSciNetMATH Gomes FA, Senne TA (2011) An SLP algorithm and its application to topology optimization. Comput Appl Math 30(1):53–89MathSciNetMATH
Zurück zum Zitat Grenestedt JL, Gudmundson P (1993) Layup optimization of composite-material structures. Optimal design with advanced materials. Optimal Design with Advanced Materials 311–336 Grenestedt JL, Gudmundson P (1993) Layup optimization of composite-material structures. Optimal design with advanced materials. Optimal Design with Advanced Materials 311–336
Zurück zum Zitat Hammer VB, Bendsøe MP, Lipton R, Pedersen P (1997) Parametrization in laminate design for optimal compliance. Int J Solids Struct 34(4):415–434CrossRefMATH Hammer VB, Bendsøe MP, Lipton R, Pedersen P (1997) Parametrization in laminate design for optimal compliance. Int J Solids Struct 34(4):415–434CrossRefMATH
Zurück zum Zitat Ibrahim S, Polyzois D, Hassan SK (2000) Development of glass fiber reinforced plastic poles for transmission and distribution lines. Can J Civ Eng 27(5):850–858 Ibrahim S, Polyzois D, Hassan SK (2000) Development of glass fiber reinforced plastic poles for transmission and distribution lines. Can J Civ Eng 27(5):850–858
Zurück zum Zitat Jones R M (2014) Mechanics of composite materials. CRC press Jones R M (2014) Mechanics of composite materials. CRC press
Zurück zum Zitat Kennedy J, Eberhart RC. (1995) Particle swarm optimization. In: Proceedings of the fourth IEEE international conference on neural networks, 1942–1948 Kennedy J, Eberhart RC. (1995) Particle swarm optimization. In: Proceedings of the fourth IEEE international conference on neural networks, 1942–1948
Zurück zum Zitat Khani A, Ijsselmuiden ST, Abdalla MM, Gurdal Z (2011) Design of variable stiffness panels for maximum strength using lamination parameters. Compos Part B 42(3):546–552CrossRef Khani A, Ijsselmuiden ST, Abdalla MM, Gurdal Z (2011) Design of variable stiffness panels for maximum strength using lamination parameters. Compos Part B 42(3):546–552CrossRef
Zurück zum Zitat Kim Y, Davalos JF, Barbero EJ (1996) Progressive failure analysis of laminated composite beams. J Compos Mater 30(5):536–560CrossRef Kim Y, Davalos JF, Barbero EJ (1996) Progressive failure analysis of laminated composite beams. J Compos Mater 30(5):536–560CrossRef
Zurück zum Zitat Kiyono CY, Silva ECN, Reddy JN (2017) A novel fiber optimization method based on normal distribution function with continuously varying fiber path. Compos Struct 160:503–515CrossRef Kiyono CY, Silva ECN, Reddy JN (2017) A novel fiber optimization method based on normal distribution function with continuously varying fiber path. Compos Struct 160:503–515CrossRef
Zurück zum Zitat Lei F, Qiu RB, Bai YC, Yuan CF (2018) An integrated optimization for laminate design and manufacturing of a CFRP wheel hub based on structural performance. Structural and Multidisciplinary Optimization, 1–13 Lei F, Qiu RB, Bai YC, Yuan CF (2018) An integrated optimization for laminate design and manufacturing of a CFRP wheel hub based on structural performance. Structural and Multidisciplinary Optimization, 1–13
Zurück zum Zitat Liu B, Haftka RT (2004) Single-level composite wing optimization based on flexural lamination parameters. Struct Multidiscip Optim 26(1–2):111–120 Liu B, Haftka RT (2004) Single-level composite wing optimization based on flexural lamination parameters. Struct Multidiscip Optim 26(1–2):111–120
Zurück zum Zitat Liu ST, Hou YP, Sun X, Zhang YC (2012a) A two-step optimization scheme for maximum stiffness design of laminated plates based on lamination parameters. Compos Struct 94(12):3529–3537CrossRef Liu ST, Hou YP, Sun X, Zhang YC (2012a) A two-step optimization scheme for maximum stiffness design of laminated plates based on lamination parameters. Compos Struct 94(12):3529–3537CrossRef
Zurück zum Zitat Liu XF, Cheng GD, Yan J, Jiang L (2012b) Singular optimum topology of skeletal structures with frequency constraints by AGGA. Struct Multidiscip Optim 45(3):451–466CrossRef Liu XF, Cheng GD, Yan J, Jiang L (2012b) Singular optimum topology of skeletal structures with frequency constraints by AGGA. Struct Multidiscip Optim 45(3):451–466CrossRef
Zurück zum Zitat Liu DZ, Toropov VV, Barton DC, Querin QM (2015) Weight and mechanical performance optimization of blended composite wing panels using lamination parameters. Struct Multidiscip Optim 52(3):549–562MathSciNetCrossRef Liu DZ, Toropov VV, Barton DC, Querin QM (2015) Weight and mechanical performance optimization of blended composite wing panels using lamination parameters. Struct Multidiscip Optim 52(3):549–562MathSciNetCrossRef
Zurück zum Zitat Lund E, Stegmann J (2005) On structural optimization of composite shell structures using a discrete constitutive parametrization. Wind Energy 8(1):109–124CrossRefMATH Lund E, Stegmann J (2005) On structural optimization of composite shell structures using a discrete constitutive parametrization. Wind Energy 8(1):109–124CrossRefMATH
Zurück zum Zitat Miki M (1982) Material design of composite laminates with required in-plane elastic properties. Proc Progress in Science and Engineering of Composites, ICCM IV, Tokyo Miki M (1982) Material design of composite laminates with required in-plane elastic properties. Proc Progress in Science and Engineering of Composites, ICCM IV, Tokyo
Zurück zum Zitat Nikbakt S, Kamarian S, Shakeri M (2018) A review on optimization of composite structures part I: laminated composites. Compos Struct 195:158–185CrossRef Nikbakt S, Kamarian S, Shakeri M (2018) A review on optimization of composite structures part I: laminated composites. Compos Struct 195:158–185CrossRef
Zurück zum Zitat Przemieniecki J S (1985) Theory of matrix structural analysis. Courier Corporation Przemieniecki J S (1985) Theory of matrix structural analysis. Courier Corporation
Zurück zum Zitat Riche RL, Haftka RT (1993) Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm. AIAA J 31(5):951–956CrossRefMATH Riche RL, Haftka RT (1993) Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm. AIAA J 31(5):951–956CrossRefMATH
Zurück zum Zitat Schütze R (1997) Lightweight carbon fibre rods and truss structures. Mater Des 18(4–6):231–238 Schütze R (1997) Lightweight carbon fibre rods and truss structures. Mater Des 18(4–6):231–238
Zurück zum Zitat Setoodeh S, Abdalla MM, Gürdal Z (2006) Design of variable–stiffness laminates using lamination parameters. Compos Part B 37(4–5):301–309CrossRef Setoodeh S, Abdalla MM, Gürdal Z (2006) Design of variable–stiffness laminates using lamination parameters. Compos Part B 37(4–5):301–309CrossRef
Zurück zum Zitat Sigmund O (2001) On the usefulness of non-gradient approaches in topology optimization. Struct Multidiscip Optim 43(5):589–596MathSciNetCrossRefMATH Sigmund O (2001) On the usefulness of non-gradient approaches in topology optimization. Struct Multidiscip Optim 43(5):589–596MathSciNetCrossRefMATH
Zurück zum Zitat Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62(14):2009–2027CrossRefMATH Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62(14):2009–2027CrossRefMATH
Zurück zum Zitat Svanberg K (1987) The method of moving asymptotes – a new method for structural optimization. Int J Numer Methods Eng 24:359–373MathSciNetCrossRefMATH Svanberg K (1987) The method of moving asymptotes – a new method for structural optimization. Int J Numer Methods Eng 24:359–373MathSciNetCrossRefMATH
Zurück zum Zitat Thuwis GA, Breuker RD, Abdalla MM, Gürdal Z (2010) Aeroelastic tailoring using lamination parameters. Struct Multidiscip Optim 41(4):637–646 Thuwis GA, Breuker RD, Abdalla MM, Gürdal Z (2010) Aeroelastic tailoring using lamination parameters. Struct Multidiscip Optim 41(4):637–646
Zurück zum Zitat Todoroki A, Terada Y (2004) Improved fractal branch and bound method for stacking-sequence optimizations of laminates. AIAA J 42(1):141–148CrossRef Todoroki A, Terada Y (2004) Improved fractal branch and bound method for stacking-sequence optimizations of laminates. AIAA J 42(1):141–148CrossRef
Zurück zum Zitat Tsai SW, Pagano NJ (1968) Invariant properties of composite materials. No. AFML-TR-67-349. Air Force Materials Lab, Wright-Patterson AFB, Ohio Tsai SW, Pagano NJ (1968) Invariant properties of composite materials. No. AFML-TR-67-349. Air Force Materials Lab, Wright-Patterson AFB, Ohio
Zurück zum Zitat Venkataraman S, Haftka RT (1999) Optimization of composite panels - a review, proceedings of the American Society for Composites – 14th annual technical conference, Fairborn, Ohio, 479–488 Venkataraman S, Haftka RT (1999) Optimization of composite panels - a review, proceedings of the American Society for Composites – 14th annual technical conference, Fairborn, Ohio, 479–488
Zurück zum Zitat Xu YJ, Zhu JH, Wu Z, Cao YF, Zhao YB, Zhang WH (2018) A review on the design of laminated composite structures: constant and variable stiffness design and topology optimization. Advanced Composites and Hybrid Materials,1–18 Xu YJ, Zhu JH, Wu Z, Cao YF, Zhao YB, Zhang WH (2018) A review on the design of laminated composite structures: constant and variable stiffness design and topology optimization. Advanced Composites and Hybrid Materials,1–18
Zurück zum Zitat Yan J, Duan ZY, Lund E, Wang JY (2017) Concurrent multi-scale design optimization of composite frames with manufacturing constraints. Struct Multidiscip Optim 56(3):519–533CrossRef Yan J, Duan ZY, Lund E, Wang JY (2017) Concurrent multi-scale design optimization of composite frames with manufacturing constraints. Struct Multidiscip Optim 56(3):519–533CrossRef
Metadaten
Titel
A two-step optimization scheme based on equivalent stiffness parameters for forcing convexity of fiber winding angle in composite frames
verfasst von
Zunyi Duan
Jun Yan
Ikjin Lee
Erik Lund
Jingyuan Wang
Publikationsdatum
10.01.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 6/2019
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-018-2179-9

Weitere Artikel der Ausgabe 6/2019

Structural and Multidisciplinary Optimization 6/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.