Skip to main content

2024 | OriginalPaper | Buchkapitel

A Unified Approach for Identification and Analysis of the Sources of Uncertainty in Machine Learning Techniques

verfasst von : Sourojit Pal, Sandip Roy, Avishek Banerjee, Kaushik Majumdar, Umesh Gupta, Saurabh Rana, Sachin Shetty

Erschienen in: Proceedings of Third International Conference on Computing and Communication Networks

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Over the last decade, there has been an intensive effort to introduce technologies that increase system smartness by incorporating artificial intelligence and machine learning, resulting in a better way of life. With this evolution, it has become particularly important to understand how trustworthy are the decisions made by autonomous systems driven by artificial intelligence coupled with machine learning and deep learning capabilities. Uncertainty quantification (UQ) has thus become a topic of interest over the last few years. In this paper, we observe the behavior of the epistemic (model), aleatoric (data), and distribution uncertainty and deduce a mathematical relationship between them. Next, we show that the epistemic probability function is inversely proportional to the distribution probability function and is directly proportional to the aleatoric probability function. Moreover, we demonstrate the impact of identifying in-domain distribution and out-of-domain distribution in model and data uncertainties. Finally, we perform an array of experiments using lung cancer data to demonstrate that improved accuracy may be obtained by striking a correct balance between the three forms of uncertainty. According to experimental findings, methodical data selection aids in adopting informed decisions, strengthening the system's dependability and enabling it to achieve close to 99% accuracy even with basic machine learning models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., Fieguth, P., Cao, X., Khosravi, A., Rajendra Acharya, U., Makarenkov, V., Nahavandi, S.: A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges, vol. 76, pp. 243–297. Elsevier, Information Fusion (2021) Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., Fieguth, P., Cao, X., Khosravi, A., Rajendra Acharya, U., Makarenkov, V., Nahavandi, S.: A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges, vol. 76, pp. 243–297. Elsevier, Information Fusion (2021)
2.
Zurück zum Zitat Malinin, A., Gales, M.: Predictive uncertainty estimation via prior networks. In: NIPS (2018) Malinin, A., Gales, M.: Predictive uncertainty estimation via prior networks. In: NIPS (2018)
3.
Zurück zum Zitat Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D., Nowozin, S., Dillon, J.V., Lakshminarayanan, B., Snoek, J.: Can you trust your model’s uncertainty? Evaluating predictive uncertainty under dataset shift. In: NIPS (2019) Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D., Nowozin, S., Dillon, J.V., Lakshminarayanan, B., Snoek, J.: Can you trust your model’s uncertainty? Evaluating predictive uncertainty under dataset shift. In: NIPS (2019)
4.
Zurück zum Zitat Gawlikowski, J.., Tassi, C.R.N., Ali, M., Lee, J., Humt, M., Feng, J., Kruspe, A., Triebel, R., Jung, P., Roscher, R., Shahzad, M., Yang, W., Bamler, R., Zhu, X.X.: A survey of uncertainty in deep neural networks. In: AI4EO—Artificial Intelligence for Earth Observation: Reasoning, Uncertainties, Ethics and Beyond (2022) Gawlikowski, J.., Tassi, C.R.N., Ali, M., Lee, J., Humt, M., Feng, J., Kruspe, A., Triebel, R., Jung, P., Roscher, R., Shahzad, M., Yang, W., Bamler, R., Zhu, X.X.: A survey of uncertainty in deep neural networks. In: AI4EO—Artificial Intelligence for Earth Observation: Reasoning, Uncertainties, Ethics and Beyond (2022)
5.
Zurück zum Zitat Yang, J., Zhou, K., Li, Y., Liu, Z.: Generalized out-of-distribution detection: a survey. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Yang, J., Zhou, K., Li, Y., Liu, Z.: Generalized out-of-distribution detection: a survey. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2022)
6.
Zurück zum Zitat Malinin, A., Gales, M.: Reverse KL-divergence training of prior networks: improved uncertainty and adversarial robustness. In: NIPS (2019) Malinin, A., Gales, M.: Reverse KL-divergence training of prior networks: improved uncertainty and adversarial robustness. In: NIPS (2019)
7.
Zurück zum Zitat Sensoy, M., Kaplan, L., Kandemir, M.: Evidential deep learning to quantify classification uncertainty. In: NIPS (2018) Sensoy, M., Kaplan, L., Kandemir, M.: Evidential deep learning to quantify classification uncertainty. In: NIPS (2018)
8.
Zurück zum Zitat Gawlikowski, J., Saha, S., Kruspe, A., Zhu, X.X.: An advanced dirichlet prior network for out-of-distribution detection in remote sensing. In: IEEE Transactions on Geoscience and Remote Sensing, vol. 60 (2022) Gawlikowski, J., Saha, S., Kruspe, A., Zhu, X.X.: An advanced dirichlet prior network for out-of-distribution detection in remote sensing. In: IEEE Transactions on Geoscience and Remote Sensing, vol. 60 (2022)
9.
Zurück zum Zitat Sensoy, M., Kaplan, L., Cerutti, F., Saleki, M.: Uncertainty-aware deep classifiers using generative models. In: AAAI Conference on Artificial Intelligence (AAAI-20) Sensoy, M., Kaplan, L., Cerutti, F., Saleki, M.: Uncertainty-aware deep classifiers using generative models. In: AAAI Conference on Artificial Intelligence (AAAI-20)
10.
Zurück zum Zitat Raj, V., Cui, T., Heinonen, M., Marttinen, P.: Incorporating functional summary information in Bayesian neural networks using a Dirichlet process likelihood approach. In: AISTAT (2023) Raj, V., Cui, T., Heinonen, M., Marttinen, P.: Incorporating functional summary information in Bayesian neural networks using a Dirichlet process likelihood approach. In: AISTAT (2023)
11.
Zurück zum Zitat Liu, J.Z., Lin, Z., Padhy, S., Tran, D., Bedrax-Weiss, T., Lakshminarayanan, B.: Simple and principled uncertainty estimation with deterministic deep learning via distance awareness. In: NIPS (2020) Liu, J.Z., Lin, Z., Padhy, S., Tran, D., Bedrax-Weiss, T., Lakshminarayanan, B.: Simple and principled uncertainty estimation with deterministic deep learning via distance awareness. In: NIPS (2020)
12.
Zurück zum Zitat Kristiadi, A., Hein, M., Hennig, P.: Being Bayesian, even just a bit, fixes overconfidence in ReLU networks. In: ICML (2020) Kristiadi, A., Hein, M., Hennig, P.: Being Bayesian, even just a bit, fixes overconfidence in ReLU networks. In: ICML (2020)
13.
Zurück zum Zitat Amini, A., Schwarting, W., Soleimany, A., Rus, D.: Deep evidential regression. In: NIPS (2020) Amini, A., Schwarting, W., Soleimany, A., Rus, D.: Deep evidential regression. In: NIPS (2020)
14.
Zurück zum Zitat Tsiligkaridis, T.: Information aware max-norm dirichlet networks for predictive uncertainty estimation. Elsevier, Neural Netw. 135, 105–114 (2021) Tsiligkaridis, T.: Information aware max-norm dirichlet networks for predictive uncertainty estimation. Elsevier, Neural Netw. 135, 105–114 (2021)
15.
Zurück zum Zitat Purba, W., Wardani, S., Lumbantoruan, D.F., Silalahi, F.C.I., Edison, T.L.: Optimization of lung cancer classification method using eda-based machine learning. Jusikom Prima 6(2), 43–50 (2023)CrossRef Purba, W., Wardani, S., Lumbantoruan, D.F., Silalahi, F.C.I., Edison, T.L.: Optimization of lung cancer classification method using eda-based machine learning. Jusikom Prima 6(2), 43–50 (2023)CrossRef
16.
Zurück zum Zitat Ren, J., Luo, J., Zhao, Y., Krishna, K., Saleh, M., Lakshminarayanan, B., Liu, P.J.: Out-of-distribution detection and selective generation for conditional language models. In: ICLR (2023) Ren, J., Luo, J., Zhao, Y., Krishna, K., Saleh, M., Lakshminarayanan, B., Liu, P.J.: Out-of-distribution detection and selective generation for conditional language models. In: ICLR (2023)
17.
Zurück zum Zitat Liu, Y., Ding, K., Liu, H., Pan, S.: GOOD-D: on unsupervised graph out-of-distribution detection. In: WSDM’23: Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, February 2023 Liu, Y., Ding, K., Liu, H., Pan, S.: GOOD-D: on unsupervised graph out-of-distribution detection. In: WSDM’23: Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, February 2023
18.
Zurück zum Zitat Yang, J., Zhou, K., Liu, Z.: Full-spectrum out-of-distribution detection. Int. J. Comput. Vis., Springer (2023) Yang, J., Zhou, K., Liu, Z.: Full-spectrum out-of-distribution detection. Int. J. Comput. Vis., Springer (2023)
Metadaten
Titel
A Unified Approach for Identification and Analysis of the Sources of Uncertainty in Machine Learning Techniques
verfasst von
Sourojit Pal
Sandip Roy
Avishek Banerjee
Kaushik Majumdar
Umesh Gupta
Saurabh Rana
Sachin Shetty
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0892-5_35