Skip to main content
Erschienen in: Journal of Dynamical and Control Systems 1/2016

15.01.2015

A Unified Approach to Input-output Linearization and Concurrent Control of Underactuated Open-chain Multi-body Systems with Holonomic and Nonholonomic Constraints

verfasst von: Robin Chhabra, M. Reza Emami

Erschienen in: Journal of Dynamical and Control Systems | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a unified geometric framework to input-output linearization of open-chain multi-body systems with symmetry in their reduced phase space. This leads us to an output tracking controller for a class of underactuated open-chain multi-body systems with holonomic and nonholonomic constraints. We consider the systems with multi-degree-of-freedom joints and possibly with non-zero constant total momentum (in the holonomic case). The examples of these systems are free-base space manipulators and mobile manipulators. We first formalize the control problem, and rigorously state an output tracking problem for such systems. Then, we introduce a geometrical definition of the end-effector pose and velocity error. The main contribution of this paper is reported in Section 5, where we solve for the input-output linearization of the highly nonlinear problem of coupled manipulator and base dynamics subject to holonomic and nonholonomic constraints. This enables us to design a coordinate-independent controller, similar to a proportional-derivative with feed-forward, for concurrently controlling a free-base, multi-body system. Finally, by defining a Lyapunov function, we prove in Theorem 3 that the closed-loop system is exponentially stable. A detailed case study concludes this paper.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aghili F. Coordination control of a free-flying manipulator and its base attitude to capture and detumble a noncooperative satellite. In: IEEE/RSJ international conference on intelligent robots and systems (IROS); 2009. p. 2365–2372. Aghili F. Coordination control of a free-flying manipulator and its base attitude to capture and detumble a noncooperative satellite. In: IEEE/RSJ international conference on intelligent robots and systems (IROS); 2009. p. 2365–2372.
2.
Zurück zum Zitat Ashrafiuon H, Erwin R. Sliding mode control of underactuated multibody systems and its application to shape change control. Int J Control 2008;81(12): 1849–1858.CrossRefMathSciNetMATH Ashrafiuon H, Erwin R. Sliding mode control of underactuated multibody systems and its application to shape change control. Int J Control 2008;81(12): 1849–1858.CrossRefMathSciNetMATH
3.
Zurück zum Zitat Barcinski T, Lisowski J, Rybus T, Seweryn K. Controlled zero dynamics feedback linearization with application to free-floating redundant orbital manipulator. In: American control conference (ACC): IEEE; 2013, pp. 1834–1839. Barcinski T, Lisowski J, Rybus T, Seweryn K. Controlled zero dynamics feedback linearization with application to free-floating redundant orbital manipulator. In: American control conference (ACC): IEEE; 2013, pp. 1834–1839.
4.
Zurück zum Zitat Bloch A. Nonholonomic mechanics and control: Springer; 2003. Bloch A. Nonholonomic mechanics and control: Springer; 2003.
5.
Zurück zum Zitat Bullo F. Nonlinear control of mechanical systems: a riemannian geometry approach. Ph.D. thesis, California Institute of Technology; 1999. Bullo F. Nonlinear control of mechanical systems: a riemannian geometry approach. Ph.D. thesis, California Institute of Technology; 1999.
6.
Zurück zum Zitat Bullo F, Lewis AD, Vol. 49. Geometric control of mechanical systems. Texts in applied mathematics. New York-Heidelberg-Berlin: Springer Verlag; 2004. Bullo F, Lewis AD, Vol. 49. Geometric control of mechanical systems. Texts in applied mathematics. New York-Heidelberg-Berlin: Springer Verlag; 2004.
7.
Zurück zum Zitat Bullo F, Z̆efran M. On mechanical control systems with nonholonomic constraints and symmetries. Syst Control Lett. 2002;45 (2): 133–143.CrossRefMathSciNetMATH Bullo F, Z̆efran M. On mechanical control systems with nonholonomic constraints and symmetries. Syst Control Lett. 2002;45 (2): 133–143.CrossRefMathSciNetMATH
8.
Zurück zum Zitat Chen C. Nonholonomic control of coupled spatial multibody systems. Ph.D. thesis, Case Western Reserve University; 1993. Chen C. Nonholonomic control of coupled spatial multibody systems. Ph.D. thesis, Case Western Reserve University; 1993.
9.
Zurück zum Zitat Chhabra R. A unified geometric framework for kinematics, dynamics and concurrent control of free-base, open-chain multi-body systems with holonomic and nonholonomic constraints. Ph.D. thesis, University of Toronto Institute for Aerospace Studies; 2014. Chhabra R. A unified geometric framework for kinematics, dynamics and concurrent control of free-base, open-chain multi-body systems with holonomic and nonholonomic constraints. Ph.D. thesis, University of Toronto Institute for Aerospace Studies; 2014.
10.
Zurück zum Zitat Chhabra R, Emami M. A generalized exponential formula for forward and differential kinematics of open-chain multi-body systems. Mech Mach Theory 2014; 73: 61–75.CrossRef Chhabra R, Emami M. A generalized exponential formula for forward and differential kinematics of open-chain multi-body systems. Mech Mach Theory 2014; 73: 61–75.CrossRef
11.
Zurück zum Zitat Chhabra R, Emami M. Nonholonomic dynamical reduction of open-chain multi-body systems: a geometric approach. Mech Mach Theory 2014;82: 231–255.CrossRef Chhabra R, Emami M. Nonholonomic dynamical reduction of open-chain multi-body systems: a geometric approach. Mech Mach Theory 2014;82: 231–255.CrossRef
12.
Zurück zum Zitat Dubowsky S, Papadopoulos E. The kinematics, dynamics, and control of free-flying and free-floating space robotic systems. IEEE Trans Robot Autom 1993;9(5). Dubowsky S, Papadopoulos E. The kinematics, dynamics, and control of free-flying and free-floating space robotic systems. IEEE Trans Robot Autom 1993;9(5).
13.
Zurück zum Zitat Duindam V, Stramigioli S. Singularity-free dynamic equations of open-chain mechanisms with general holonomic and nonholonomic joints. IEEE Trans Robot. 2008; 24(3): 517–526.CrossRef Duindam V, Stramigioli S. Singularity-free dynamic equations of open-chain mechanisms with general holonomic and nonholonomic joints. IEEE Trans Robot. 2008; 24(3): 517–526.CrossRef
14.
Zurück zum Zitat Grizzle J, Moog C, Chevallereau C. Nonlinear control of mechanical systems with an unactuated cyclic variable. IEEE Trans Autom Control 2005;50(5): 559–576.CrossRefMathSciNet Grizzle J, Moog C, Chevallereau C. Nonlinear control of mechanical systems with an unactuated cyclic variable. IEEE Trans Autom Control 2005;50(5): 559–576.CrossRefMathSciNet
15.
Zurück zum Zitat Hervé J. The lie group of rigid body displacements, a fundamental tool for mechanism design. Mech Mach Theory 1999;34(5): 719–730.CrossRefMathSciNetMATH Hervé J. The lie group of rigid body displacements, a fundamental tool for mechanism design. Mech Mach Theory 1999;34(5): 719–730.CrossRefMathSciNetMATH
16.
Zurück zum Zitat Hussein I, Bloch A. Optimal control of underactuated nonholonomic mechanical systems. IEEE Trans Autom Control 2008;53(3): 668–682.CrossRefMathSciNet Hussein I, Bloch A. Optimal control of underactuated nonholonomic mechanical systems. IEEE Trans Autom Control 2008;53(3): 668–682.CrossRefMathSciNet
17.
Zurück zum Zitat Koiller J. Reduction of some classical non-holonomic systems with symmetry. Archive Ration Mech Anal. 1992;118(2): 113–148.CrossRefMathSciNetMATH Koiller J. Reduction of some classical non-holonomic systems with symmetry. Archive Ration Mech Anal. 1992;118(2): 113–148.CrossRefMathSciNetMATH
18.
19.
Zurück zum Zitat Mukherjee R, Chen D. Control of free-flying underactuated space manipulators to equilibrium manifolds. IEEE Trans Robot Autom. 1993;9(5). Mukherjee R, Chen D. Control of free-flying underactuated space manipulators to equilibrium manifolds. IEEE Trans Robot Autom. 1993;9(5).
20.
Zurück zum Zitat Nenchev D, Umetani Y, Yoshida K. Analysis of a redundant free-flying spacecraft/manipulator system. IEEE Trans Robot Autom 1992;8: 1.CrossRef Nenchev D, Umetani Y, Yoshida K. Analysis of a redundant free-flying spacecraft/manipulator system. IEEE Trans Robot Autom 1992;8: 1.CrossRef
21.
Zurück zum Zitat Olfati-Saber R. Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles. Ph.D. thesis, Massachusetts Institute of Technology; 2001. Olfati-Saber R. Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles. Ph.D. thesis, Massachusetts Institute of Technology; 2001.
22.
Zurück zum Zitat Olfati-Saber R. Normal forms for underactuated mechanical systems with symmetry. IEEE Trans Autom Control 2002;47(2): 305–308.CrossRefMathSciNet Olfati-Saber R. Normal forms for underactuated mechanical systems with symmetry. IEEE Trans Autom Control 2002;47(2): 305–308.CrossRefMathSciNet
23.
Zurück zum Zitat Parlaktuna O, Ozkan M. Adaptive control of free-floating space manipulators using dynamically equivalent manipulator model. Robot Auton Syst 2004; 46(3): 185–193.CrossRef Parlaktuna O, Ozkan M. Adaptive control of free-floating space manipulators using dynamically equivalent manipulator model. Robot Auton Syst 2004; 46(3): 185–193.CrossRef
24.
Zurück zum Zitat Pazelli T, Terra M, Siqueira A. Experimental investigation on adaptive robust controller designs applied to a free-floating space manipulator. Control Eng Pract 2011; 19(4): 395–408.CrossRef Pazelli T, Terra M, Siqueira A. Experimental investigation on adaptive robust controller designs applied to a free-floating space manipulator. Control Eng Pract 2011; 19(4): 395–408.CrossRef
25.
Zurück zum Zitat Selig J. Geometric fundamentals of robotics, 2nd edn. Springer; 2005. Selig J. Geometric fundamentals of robotics, 2nd edn. Springer; 2005.
26.
Zurück zum Zitat Shen J. Nonlinear control of multibody systems with symmetries via shape change. Ph.D. thesis, University of Michigan, Ann Arbor; 2002. Shen J. Nonlinear control of multibody systems with symmetries via shape change. Ph.D. thesis, University of Michigan, Ann Arbor; 2002.
27.
Zurück zum Zitat Shen J, McClamroch N. Translational and rotational maneuvers of an underactuated space robot using prismatic actuators. Int J Robot Res 2002;21(5–6): 607–620.CrossRef Shen J, McClamroch N. Translational and rotational maneuvers of an underactuated space robot using prismatic actuators. Int J Robot Res 2002;21(5–6): 607–620.CrossRef
28.
Zurück zum Zitat Shen J, McClamroch N, Bloch A. Local equilibrium controllability of multibody systems controlled via shape change. IEEE Trans Autom Control 2004;49(4): 506–520.CrossRefMathSciNet Shen J, McClamroch N, Bloch A. Local equilibrium controllability of multibody systems controlled via shape change. IEEE Trans Autom Control 2004;49(4): 506–520.CrossRefMathSciNet
29.
Zurück zum Zitat Shen J, Schneider D, Bloch A. Controllability and motion planning of a multibody chaplygin’s sphere and chaplygin’s top. Int J Robust Nonlinear Control 2008; 18: 905–945.CrossRefMathSciNetMATH Shen J, Schneider D, Bloch A. Controllability and motion planning of a multibody chaplygin’s sphere and chaplygin’s top. Int J Robust Nonlinear Control 2008; 18: 905–945.CrossRefMathSciNetMATH
30.
Zurück zum Zitat Sreenath N. Modeling and control of multibody systems. Ph.D. thesis, University of Maryland, College Park; 1987. Sreenath N. Modeling and control of multibody systems. Ph.D. thesis, University of Maryland, College Park; 1987.
31.
32.
Zurück zum Zitat Tortopidis I, Papadopoulos E. On point-to-point motion planning for underactuated space manipulator systems. Robot Autonom Syst 2007;55(2): 122–131.CrossRef Tortopidis I, Papadopoulos E. On point-to-point motion planning for underactuated space manipulator systems. Robot Autonom Syst 2007;55(2): 122–131.CrossRef
33.
Zurück zum Zitat Umetani Y, Yoshida K. Resolved motion rate control of space manipulators with generalized jacobian matrix. IEEE Trans Robot Autom 1989;5(3). Umetani Y, Yoshida K. Resolved motion rate control of space manipulators with generalized jacobian matrix. IEEE Trans Robot Autom 1989;5(3).
34.
Zurück zum Zitat Vafa Z, Dubowsky S. On the dynamics of manipulators in space using the virtual manipulator approach. Proc IEEE Int Conf Robot Autom 1987: 579–585. Vafa Z, Dubowsky S. On the dynamics of manipulators in space using the virtual manipulator approach. Proc IEEE Int Conf Robot Autom 1987: 579–585.
35.
Zurück zum Zitat Wang H, Xie Y. Adaptive jacobian position/force tracking control of free-flying manipulators. Robot Autonom Syst 2009;57(2): 173–181.CrossRef Wang H, Xie Y. Adaptive jacobian position/force tracking control of free-flying manipulators. Robot Autonom Syst 2009;57(2): 173–181.CrossRef
36.
Zurück zum Zitat Wang H, Xie Y. Passivity based adaptive jacobian tracking for free-floating space manipulators without using spacecraft acceleration. Automatica 2009;45(6): 1510–1517.CrossRefMathSciNetMATH Wang H, Xie Y. Passivity based adaptive jacobian tracking for free-floating space manipulators without using spacecraft acceleration. Automatica 2009;45(6): 1510–1517.CrossRefMathSciNetMATH
37.
Zurück zum Zitat Wang H, Xie Y. On the recursive adaptive control for free-floating space manipulators. J Intell Robot Syst 2012;66(4): 443–461.CrossRefMATH Wang H, Xie Y. On the recursive adaptive control for free-floating space manipulators. J Intell Robot Syst 2012;66(4): 443–461.CrossRefMATH
38.
Zurück zum Zitat Wee L, Walker M, McClamroch N. An articulated-body model for a free-flying robot and its use for adaptive motion control. IEEE Trans Robot Autom 1997;13(2). Wee L, Walker M, McClamroch N. An articulated-body model for a free-flying robot and its use for adaptive motion control. IEEE Trans Robot Autom 1997;13(2).
Metadaten
Titel
A Unified Approach to Input-output Linearization and Concurrent Control of Underactuated Open-chain Multi-body Systems with Holonomic and Nonholonomic Constraints
verfasst von
Robin Chhabra
M. Reza Emami
Publikationsdatum
15.01.2015
Verlag
Springer US
Erschienen in
Journal of Dynamical and Control Systems / Ausgabe 1/2016
Print ISSN: 1079-2724
Elektronische ISSN: 1573-8698
DOI
https://doi.org/10.1007/s10883-014-9266-z

Weitere Artikel der Ausgabe 1/2016

Journal of Dynamical and Control Systems 1/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.