Skip to main content
Erschienen in: Rheologica Acta 7/2013

01.07.2013 | Original Contribution

A unified approach to model elasto-viscoplastic thixotropic yield-stress materials and apparent yield-stress fluids

verfasst von: Paulo R. de Souza Mendes, Roney L. Thompson

Erschienen in: Rheologica Acta | Ausgabe 7/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A constitutive model for elasto-viscoplastic thixotropic materials is proposed. It consists of two differential equations, one for the stress and the other for the structure parameter, a scalar quantity that indicates the structuring level of the microstructure. In contrast to previous models of this kind, the structure parameter varies from zero to a positive and typically large number. The lower limit corresponds to a fully unstructured material, whereas the upper limit corresponds to a fully structured material. When the upper limit is finite, the model represents a highly shear-thinning, thixotropic, and viscoelastic liquid that possesses an apparent yield stress. When it tends to infinity, the behavior of a true yield-stress material is achieved. Predictions for rheometric flows such as constant shear rate tests, creep tests, SAOS, and large-amplitude oscillatory shear (LAOS) are presented, and it is shown that, in all cases, the trends observed experimentally are faithfully reproduced by the model. Within the framework of the model, simple explanations are given for the avalanche effect and the shear banding phenomenon. The LAOS results obtained are of particular importance because they provide a piece of information that so far is absent in the literature, namely a quantitative link between the Lissajous–Bowditch curve shapes and rheological effects such as elasticity, thixotropy, and yielding.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Fußnoten
1
“A stress below which, for a given material, no unrecoverable flow occurs.”
 
2
When \(\eta _{v}\) is of the order of \(\eta _{\infty }\), the material is nearly fully unstructured, and hence, no elasticity is expected (\(\lambda \simeq 0;\ G_{s}\rightarrow \infty \)). When \(\eta _{v}\) is larger than \(\eta _{\infty }\) (say \(\eta _{v}\gtrsim 10\eta _{\infty }\)), then the stress in the Newtonian element represents a small contribution to the total stress, and hence, the stress in the Maxwell element is nearly constant (see Fig. 1).
 
3
Note that circles and ellipses whose principal axes are parallel to the coordinate axes are equivalent, the actual shape depending merely on the coordinate scales employed. The angle of the principal axes of the ellipse with respect to the coordinate axes, however, can be related to the phase shift and hence to the viscous and elastic relative contributions to the stress.
 
Literatur
Zurück zum Zitat Astarita G (1990) The engineering reality of the yield stress. J Rheol 34(2):275–277CrossRef Astarita G (1990) The engineering reality of the yield stress. J Rheol 34(2):275–277CrossRef
Zurück zum Zitat Bailey NP, Schøtz J, Lemaître A, Jacobsen KW (2007) Avalanche size scaling in sheared three-dimensional amorphous solid. PRL 98(095501):1–4 Bailey NP, Schøtz J, Lemaître A, Jacobsen KW (2007) Avalanche size scaling in sheared three-dimensional amorphous solid. PRL 98(095501):1–4
Zurück zum Zitat Barnes HA (1997) Thixotropy—a review. J Non-Newtonian Fluid Mech 70:1–33CrossRef Barnes HA (1997) Thixotropy—a review. J Non-Newtonian Fluid Mech 70:1–33CrossRef
Zurück zum Zitat Barnes HA (1999) The yield stress—a review. J Non-Newtonian Fluid Mech 81:133–178CrossRef Barnes HA (1999) The yield stress—a review. J Non-Newtonian Fluid Mech 81:133–178CrossRef
Zurück zum Zitat Barnes HA, Walters K (1985) The yield stress myth? Rheol Acta 24:323–326CrossRef Barnes HA, Walters K (1985) The yield stress myth? Rheol Acta 24:323–326CrossRef
Zurück zum Zitat Bautista F, de Santos JM, Puig JE, Manero O (1999) Understanding thixotropic and antithixotropic behavior of viscoelastic micellar solutions and liquid crystalline dispersions. I. The model. J Non-Newtonian Fluid Mech 80(2–3):93–113CrossRef Bautista F, de Santos JM, Puig JE, Manero O (1999) Understanding thixotropic and antithixotropic behavior of viscoelastic micellar solutions and liquid crystalline dispersions. I. The model. J Non-Newtonian Fluid Mech 80(2–3):93–113CrossRef
Zurück zum Zitat Bercovier M, Engelman M (1980) A finite-element method for incompressible non-Newtonian flows. J Computat Phys 36:313–326CrossRef Bercovier M, Engelman M (1980) A finite-element method for incompressible non-Newtonian flows. J Computat Phys 36:313–326CrossRef
Zurück zum Zitat Bingham EC (1922) Fluidity and plasticity. McGraw-Hill, New York Bingham EC (1922) Fluidity and plasticity. McGraw-Hill, New York
Zurück zum Zitat Callaghan PT (2008) Rheo NMR and shear banding. Rheol Acta 47:243–255CrossRef Callaghan PT (2008) Rheo NMR and shear banding. Rheol Acta 47:243–255CrossRef
Zurück zum Zitat Coussot P, Nguyen QD, Huynh HT, Bonn D (2002a) Viscosity bifurcation in thixotropic, yielding fluids. J. Rheol 46:573–589CrossRef Coussot P, Nguyen QD, Huynh HT, Bonn D (2002a) Viscosity bifurcation in thixotropic, yielding fluids. J. Rheol 46:573–589CrossRef
Zurück zum Zitat Coussot P, Nguyen QD, Huynh HT, Bonn D (2002b) Avalanche behavior in yield stress fluids. Phys Rev Lett 88(17):175501-1–175501-4CrossRef Coussot P, Nguyen QD, Huynh HT, Bonn D (2002b) Avalanche behavior in yield stress fluids. Phys Rev Lett 88(17):175501-1–175501-4CrossRef
Zurück zum Zitat de Souza Mendes PR (2007) Dimensionless non-Newtonian fluid mechanics. J Non-Newtonian Fluid Mech 147(1–2):109–116CrossRef de Souza Mendes PR (2007) Dimensionless non-Newtonian fluid mechanics. J Non-Newtonian Fluid Mech 147(1–2):109–116CrossRef
Zurück zum Zitat de Souza Mendes PR, Dutra ESS (2004) Viscosity function for yield-stress liquids. Appl Rheol 14(6):296–302 de Souza Mendes PR, Dutra ESS (2004) Viscosity function for yield-stress liquids. Appl Rheol 14(6):296–302
Zurück zum Zitat de Souza Mendes PR, Thompson RL (2012) A critical overview of elasto-viscoplastic thixotropic modeling. J Non-Newtonian Fluid Mech 187–188:8–15CrossRef de Souza Mendes PR, Thompson RL (2012) A critical overview of elasto-viscoplastic thixotropic modeling. J Non-Newtonian Fluid Mech 187–188:8–15CrossRef
Zurück zum Zitat Dhont JKG, Briels WJ (2008) Gradient and vorticity banding. Rheol Acta 47:257–281CrossRef Dhont JKG, Briels WJ (2008) Gradient and vorticity banding. Rheol Acta 47:257–281CrossRef
Zurück zum Zitat Dullaert K, Mewis J (2006) A structural kinetics model for thixotropy. J Non-Newtonian Fluid Mech 139:21–30CrossRef Dullaert K, Mewis J (2006) A structural kinetics model for thixotropy. J Non-Newtonian Fluid Mech 139:21–30CrossRef
Zurück zum Zitat Evans ID (1992) On the nature of the yield stress. J Non-Newtonian Fluid Mech 36(7):1313–1316 Evans ID (1992) On the nature of the yield stress. J Non-Newtonian Fluid Mech 36(7):1313–1316
Zurück zum Zitat Ewoldt RH, McKinley GH (2010) On secondary loops in LAOS via self-intersection of Lissajous-Bowditch curves. Rheol Acta 49:213–219CrossRef Ewoldt RH, McKinley GH (2010) On secondary loops in LAOS via self-intersection of Lissajous-Bowditch curves. Rheol Acta 49:213–219CrossRef
Zurück zum Zitat Ewoldt RH, Hosoi AE, McKinley GH (2008) New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J Rheol 52(6):1427–1458CrossRef Ewoldt RH, Hosoi AE, McKinley GH (2008) New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J Rheol 52(6):1427–1458CrossRef
Zurück zum Zitat Ewoldt RH, Winter P, Maxey J, McKinley GH (2010) Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials. Rheol Acta 49:191–212CrossRef Ewoldt RH, Winter P, Maxey J, McKinley GH (2010) Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials. Rheol Acta 49:191–212CrossRef
Zurück zum Zitat Fall A, Paredes J, Bonn D (2010) Yielding and shear banding in soft glassy materials, vol 105 Fall A, Paredes J, Bonn D (2010) Yielding and shear banding in soft glassy materials, vol 105
Zurück zum Zitat Fielding SM, Cates ME, Sollich P (2009) Shear banding, aging and noise dynamics in soft glassy materials. Soft Matter 5:2378–2382CrossRef Fielding SM, Cates ME, Sollich P (2009) Shear banding, aging and noise dynamics in soft glassy materials. Soft Matter 5:2378–2382CrossRef
Zurück zum Zitat Freitas AA, Soares EJ, Thompson RL (2011) Immiscible Newtonian displacement by a viscoplastic material in a capillary plane channel. Rheol Acta 50:403–422CrossRef Freitas AA, Soares EJ, Thompson RL (2011) Immiscible Newtonian displacement by a viscoplastic material in a capillary plane channel. Rheol Acta 50:403–422CrossRef
Zurück zum Zitat Hartnett JP, Hu RYZ (1989) The yield stress—an engineering reality. J Rheol 33(4):671–679CrossRef Hartnett JP, Hu RYZ (1989) The yield stress—an engineering reality. J Rheol 33(4):671–679CrossRef
Zurück zum Zitat Houska M (1981) Engineering aspects of the rheology of thixotropic liquids. PhD thesis, Czech Technical University of Prague-CVUT, Prague Houska M (1981) Engineering aspects of the rheology of thixotropic liquids. PhD thesis, Czech Technical University of Prague-CVUT, Prague
Zurück zum Zitat Li Q-K, Li M (2006) Atomic scale characterization of shear bands in an amorphous metal. Appl Phys Lett 88(241903):1–3 Li Q-K, Li M (2006) Atomic scale characterization of shear bands in an amorphous metal. Appl Phys Lett 88(241903):1–3
Zurück zum Zitat Li Q-K, Li M (2007) Assessing the critical sizes for shear band formation in metallic glasses from molecular dynamics simulation. Appl Phys Lett 91(231905):1–3 Li Q-K, Li M (2007) Assessing the critical sizes for shear band formation in metallic glasses from molecular dynamics simulation. Appl Phys Lett 91(231905):1–3
Zurück zum Zitat Liu BT, Muller SJ, Denn MM (2002) Convergence of a regularization method for creeping flow of a Bingham material about a rigid sphere. J Non-Newtonian Fluid Mech 102:179–191CrossRef Liu BT, Muller SJ, Denn MM (2002) Convergence of a regularization method for creeping flow of a Bingham material about a rigid sphere. J Non-Newtonian Fluid Mech 102:179–191CrossRef
Zurück zum Zitat Manneville S (2008) Recent experimental probes of shear banding. Rheol Acta 47:301–318CrossRef Manneville S (2008) Recent experimental probes of shear banding. Rheol Acta 47:301–318CrossRef
Zurück zum Zitat Martens K, Bocquet L, Barrat J-L (2012) Spontaneous formation of permanent shear bands in a mesoscopic model of flowing disordered matter. Soft Matter 8:4197–4205CrossRef Martens K, Bocquet L, Barrat J-L (2012) Spontaneous formation of permanent shear bands in a mesoscopic model of flowing disordered matter. Soft Matter 8:4197–4205CrossRef
Zurück zum Zitat Mas R, Magnin A (1997) Experimental validation of steady shear and dynamic viscosity relation for yield stress fluids. Rheol Acta 36:49–55CrossRef Mas R, Magnin A (1997) Experimental validation of steady shear and dynamic viscosity relation for yield stress fluids. Rheol Acta 36:49–55CrossRef
Zurück zum Zitat Mewis J, Wagner NJ (2009) Thixotropy. Adv Colloid Interface Sci 147–148:214–227CrossRef Mewis J, Wagner NJ (2009) Thixotropy. Adv Colloid Interface Sci 147–148:214–227CrossRef
Zurück zum Zitat Møller PCF, Mewis J, Bonn D (2006) Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice. Soft Matter 2:274–283CrossRef Møller PCF, Mewis J, Bonn D (2006) Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice. Soft Matter 2:274–283CrossRef
Zurück zum Zitat Møller PCF, Rodts S, Michels MAJ, Bonn D (2008) Shear banding and yield stress in soft glassy materials. Phys Rev E 77(041507) Møller PCF, Rodts S, Michels MAJ, Bonn D (2008) Shear banding and yield stress in soft glassy materials. Phys Rev E 77(041507)
Zurück zum Zitat Moore F (1959) The rheology of ceramic slips and bodies. Trans Brit Ceram Soc 58:470–492 Moore F (1959) The rheology of ceramic slips and bodies. Trans Brit Ceram Soc 58:470–492
Zurück zum Zitat Mujumdar A, Beris AN, Metzner AB (2002) Transient phenomena in thixotropic systems. J Non-Newtonian Fluid Mech 102:157–178CrossRef Mujumdar A, Beris AN, Metzner AB (2002) Transient phenomena in thixotropic systems. J Non-Newtonian Fluid Mech 102:157–178CrossRef
Zurück zum Zitat Nguyen QD, Boger DV (1992) Measuring the flow properties of yield stress fluids. Annu Rev Fluid Mech 24:47–88CrossRef Nguyen QD, Boger DV (1992) Measuring the flow properties of yield stress fluids. Annu Rev Fluid Mech 24:47–88CrossRef
Zurück zum Zitat Olmsted PD (2008) Perspectives on shear banding in complex fluids. Rheol Acta 47:283–300CrossRef Olmsted PD (2008) Perspectives on shear banding in complex fluids. Rheol Acta 47:283–300CrossRef
Zurück zum Zitat Papanastasiou TC (1987) Flows of materials with yield. J Rheology 31:385–404CrossRef Papanastasiou TC (1987) Flows of materials with yield. J Rheology 31:385–404CrossRef
Zurück zum Zitat Quemada D (1999) Rheological modelling of complex fluids: IV: Thixotropic and “thixoelastic” behaviour. Start-up and stress relaxation, creep tests and hysteresis cycles. Eur Phys J AP 5:191–207CrossRef Quemada D (1999) Rheological modelling of complex fluids: IV: Thixotropic and “thixoelastic” behaviour. Start-up and stress relaxation, creep tests and hysteresis cycles. Eur Phys J AP 5:191–207CrossRef
Zurück zum Zitat Raudsepp A, Feindel KW, Hemar Y (2010) Shear localisation in stirred yoghurt. Rheol Acta 49:371–379CrossRef Raudsepp A, Feindel KW, Hemar Y (2010) Shear localisation in stirred yoghurt. Rheol Acta 49:371–379CrossRef
Zurück zum Zitat Robertson RE, Stiff HA Jr (1976) An improved mathematical model for relating shear stress to shear rate in drilling fluids and cement slurries. SPE J 16:31–36 Robertson RE, Stiff HA Jr (1976) An improved mathematical model for relating shear stress to shear rate in drilling fluids and cement slurries. SPE J 16:31–36
Zurück zum Zitat Rogers SA (2012) A sequence of physical processes determined and quantified in laos: an instantaneous local 2d/3d approach. J Rheol 56:1129–1151CrossRef Rogers SA (2012) A sequence of physical processes determined and quantified in laos: an instantaneous local 2d/3d approach. J Rheol 56:1129–1151CrossRef
Zurück zum Zitat Rogers SA, Lettinga MP (2012) A sequence of physical processes determined and quantified in laos: application to theoretical nonlinear models. J Rheol 56(1):1–25CrossRef Rogers SA, Lettinga MP (2012) A sequence of physical processes determined and quantified in laos: application to theoretical nonlinear models. J Rheol 56(1):1–25CrossRef
Zurück zum Zitat Rogers SA, Erwin BM, Vlassopoulos D, Cloitre M (2011) A sequence of physical processes determined and quantified in laos: application to a yield stress fluid. J Rheol 55(2):435–458CrossRef Rogers SA, Erwin BM, Vlassopoulos D, Cloitre M (2011) A sequence of physical processes determined and quantified in laos: application to a yield stress fluid. J Rheol 55(2):435–458CrossRef
Zurück zum Zitat Schall P, van Heckem M (2010) Shear bands in matter with granularity. Annu Rev Fluid Mech 42:67–88CrossRef Schall P, van Heckem M (2010) Shear bands in matter with granularity. Annu Rev Fluid Mech 42:67–88CrossRef
Zurück zum Zitat Schurz J (1990) The yield stress—an empirical reality. Rheol Acta 29(2):170–171CrossRef Schurz J (1990) The yield stress—an empirical reality. Rheol Acta 29(2):170–171CrossRef
Zurück zum Zitat Tiu C, Guo J, Uhlherr PHT (2006) Yielding behavior of viscoplastic materials. J Ind Eng Chem 12(5):653–662 Tiu C, Guo J, Uhlherr PHT (2006) Yielding behavior of viscoplastic materials. J Ind Eng Chem 12(5):653–662
Zurück zum Zitat Wakeda M, Shibutani Y, Ogata S, Park J (2008) Multiple shear banding in a computational amorphous alloy model. Appl Phys A 91:281–285CrossRef Wakeda M, Shibutani Y, Ogata S, Park J (2008) Multiple shear banding in a computational amorphous alloy model. Appl Phys A 91:281–285CrossRef
Zurück zum Zitat Yziquel F, Carreau P, Moan M, Tanguy P (1999) Rheological modeling of concentrated colloidal suspensions. J Non-Newtonian Fluid Mech 86:133–155CrossRef Yziquel F, Carreau P, Moan M, Tanguy P (1999) Rheological modeling of concentrated colloidal suspensions. J Non-Newtonian Fluid Mech 86:133–155CrossRef
Metadaten
Titel
A unified approach to model elasto-viscoplastic thixotropic yield-stress materials and apparent yield-stress fluids
verfasst von
Paulo R. de Souza Mendes
Roney L. Thompson
Publikationsdatum
01.07.2013
Verlag
Springer-Verlag
Erschienen in
Rheologica Acta / Ausgabe 7/2013
Print ISSN: 0035-4511
Elektronische ISSN: 1435-1528
DOI
https://doi.org/10.1007/s00397-013-0699-1

Weitere Artikel der Ausgabe 7/2013

Rheologica Acta 7/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.