Skip to main content

2018 | OriginalPaper | Buchkapitel

A Unified Hyperbolic Formulation for Viscous Fluids and Elastoplastic Solids

verfasst von : Michael Dumbser, Ilya Peshkov, Evgeniy Romenski

Erschienen in: Theory, Numerics and Applications of Hyperbolic Problems II

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We discuss a unified flow theory which in a single system of hyperbolic partial differential equations (PDEs) can describe the two main branches of continuum mechanics, fluid dynamics and solid dynamics. The fundamental difference from the classical continuum models, such as the Navier–Stokes, for example, is that the finite length scale of the continuum particles is not ignored but kept in the model in order to semi-explicitly describe the essence of any flows, that is the process of continuum particles rearrangements. To allow the continuum particle rearrangements, we admit the deformability of particle which is described by the distortion field. The ability of media to flow is characterized by the strain dissipation time which is a characteristic time necessary for a continuum particle to rearrange with one of its neighboring particles. It is shown that the continuum particle length scale is intimately connected with the dissipation time. The governing equations are represented by a system of first-order hyperbolic PDEs with source terms modeling the dissipation due to particle rearrangements. Numerical examples justifying the reliability of the proposed approach are demonstrated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
From the other hand, in the context of the scaleless particles of classical continuum mechanics it is impossible to define the rearrangements because the notion of a neighboring continuum particle becomes indefinite, and thus what remains is not to describe the flow itself but rather to mimic some indirect flow indicators, such as stress–strain-rate relations, etc. Such a mimic strategy is of course admissible in the engineering problems, but it is unable to give a meaningful explanation to the physical phenomena.
 
2
The incompatibility condition for \( \varvec{A} \) is \( \varvec{B}:=\mathrm{curl(\varvec{A})} \ne 0 \), where \( \varvec{B} \) is a so-called Burgers tensor which is interpreted as the number density of the slips (defects) between continuum particles. The term \( \mathrm{curl}(\varvec{A}) \) also emerges in the time evolution for \( \varvec{A} \).
 
Literatur
1.
Zurück zum Zitat I. Peshkov, E. Romenski, A hyperbolic model for viscous Newtonian flows. Contin. Mech. Thermodyn. 28(1–2), 85–104 (2016)MathSciNetCrossRef I. Peshkov, E. Romenski, A hyperbolic model for viscous Newtonian flows. Contin. Mech. Thermodyn. 28(1–2), 85–104 (2016)MathSciNetCrossRef
3.
Zurück zum Zitat S.K. Godunov, E.I. Romenskii, Nonstationary equations of nonlinear elasticity theory in Eulerian coordinates. J. Appl. Mech. Techn. Phys. 13(6), 868–884 (1972)CrossRef S.K. Godunov, E.I. Romenskii, Nonstationary equations of nonlinear elasticity theory in Eulerian coordinates. J. Appl. Mech. Techn. Phys. 13(6), 868–884 (1972)CrossRef
4.
Zurück zum Zitat S.K. Godunov, Elements of Mechanics of Continuous Media. Nauka S.K. Godunov, Elements of Mechanics of Continuous Media. Nauka
5.
Zurück zum Zitat E.I. Romenskii, Hyperbolic equations of Maxwell’s nonlinear model of elastoplastic heat-conducting media. Sib. Math. J. 30(4), 606–625 (1989)MathSciNetCrossRef E.I. Romenskii, Hyperbolic equations of Maxwell’s nonlinear model of elastoplastic heat-conducting media. Sib. Math. J. 30(4), 606–625 (1989)MathSciNetCrossRef
6.
Zurück zum Zitat L.A. Merzhievsky, A.D. Resnyansky, The role of numerical simulation in the study of high-velocity impact. Int. J. Impact Eng. 17(4), 559–570 (1995)CrossRef L.A. Merzhievsky, A.D. Resnyansky, The role of numerical simulation in the study of high-velocity impact. Int. J. Impact Eng. 17(4), 559–570 (1995)CrossRef
7.
Zurück zum Zitat A.D. Resnyansky, DYNA-modelling of the high-velocity impact problems with a split-element algorithm. Int. J. Impact Eng. 27(7), 709–727 (2002)CrossRef A.D. Resnyansky, DYNA-modelling of the high-velocity impact problems with a split-element algorithm. Int. J. Impact Eng. 27(7), 709–727 (2002)CrossRef
8.
Zurück zum Zitat S.L. Gavrilyuk, N. Favrie, R. Saurel, Modelling wave dynamics of compressible elastic materials. J. Comput. Phys. 227, 2941–2969 (2008)MathSciNetCrossRef S.L. Gavrilyuk, N. Favrie, R. Saurel, Modelling wave dynamics of compressible elastic materials. J. Comput. Phys. 227, 2941–2969 (2008)MathSciNetCrossRef
9.
Zurück zum Zitat P.T. Barton, D. Drikakis, E.I. Romenski, An Eulerian finite-volume scheme for large elastoplastic deformations in solids. Int. J. Numer. Methods Eng. 81(4), 453–484 (2010)MathSciNetMATH P.T. Barton, D. Drikakis, E.I. Romenski, An Eulerian finite-volume scheme for large elastoplastic deformations in solids. Int. J. Numer. Methods Eng. 81(4), 453–484 (2010)MathSciNetMATH
10.
Zurück zum Zitat S.K. Godunov, I.M. Peshkov, Thermodynamically consistent nonlinear model of elastoplastic maxwell medium. Comput. Math. Math. Phys. 50(8), 1409–1426 (2010)MathSciNetCrossRef S.K. Godunov, I.M. Peshkov, Thermodynamically consistent nonlinear model of elastoplastic maxwell medium. Comput. Math. Math. Phys. 50(8), 1409–1426 (2010)MathSciNetCrossRef
11.
Zurück zum Zitat N. Favrie, S.L. Gavrilyuk, R. Saurel, Solid-fluid diffuse interface model in cases of extreme deformations. J. Comput. Phys. 228(16), 6037–6077 (2009)MathSciNetCrossRef N. Favrie, S.L. Gavrilyuk, R. Saurel, Solid-fluid diffuse interface model in cases of extreme deformations. J. Comput. Phys. 228(16), 6037–6077 (2009)MathSciNetCrossRef
12.
Zurück zum Zitat A.D. Resnyansky, N.K. Bourne, J.C.F. Millett, E.N. Brown, Constitutive modeling of shock response of polytetrafluoroethylene. J. Appl. Phys. 110(3), 33530 (2011)CrossRef A.D. Resnyansky, N.K. Bourne, J.C.F. Millett, E.N. Brown, Constitutive modeling of shock response of polytetrafluoroethylene. J. Appl. Phys. 110(3), 33530 (2011)CrossRef
13.
Zurück zum Zitat P.T. Barton, R. Deiterding, D. Meiron, D. Pullin, Eulerian adaptive finite-difference method for high-velocity impact and penetration problems. J. Comput. Phys. 240, 76–99 (2013)MathSciNetCrossRef P.T. Barton, R. Deiterding, D. Meiron, D. Pullin, Eulerian adaptive finite-difference method for high-velocity impact and penetration problems. J. Comput. Phys. 240, 76–99 (2013)MathSciNetCrossRef
14.
Zurück zum Zitat S. Ndanou, N. Favrie, S. Gavrilyuk, Criterion of hyperbolicity in hyperelasticity in the case of the stored energy in separable form. J. Elast. 115(1), 1–25 (2014)MathSciNetCrossRef S. Ndanou, N. Favrie, S. Gavrilyuk, Criterion of hyperbolicity in hyperelasticity in the case of the stored energy in separable form. J. Elast. 115(1), 1–25 (2014)MathSciNetCrossRef
15.
Zurück zum Zitat I. Peshkov, M. Grmela, E. Romenski, Irreversible mechanics and thermodynamics of two-phase continua experiencing stress-induced solid–fluid transitions. Contin. Mech. Thermodyn. 27(6), 905–940 (2015)MathSciNetCrossRef I. Peshkov, M. Grmela, E. Romenski, Irreversible mechanics and thermodynamics of two-phase continua experiencing stress-induced solid–fluid transitions. Contin. Mech. Thermodyn. 27(6), 905–940 (2015)MathSciNetCrossRef
17.
Zurück zum Zitat J.F. Besseling, A thermodynamic approach to rheology, in Irreversible Aspects of Continuum Mechanics and Transfer of Physical Characteristics in Moving Fluids. IUTAM Symposia ed. by H. Parkus, L.I. Sedov (Springer, Vienna 1968) pp. 16–53CrossRef J.F. Besseling, A thermodynamic approach to rheology, in Irreversible Aspects of Continuum Mechanics and Transfer of Physical Characteristics in Moving Fluids. IUTAM Symposia ed. by H. Parkus, L.I. Sedov (Springer, Vienna 1968) pp. 16–53CrossRef
19.
Zurück zum Zitat J. Frenkel, Kinetic Theory of Liquids (Dover, 1955) J. Frenkel, Kinetic Theory of Liquids (Dover, 1955)
20.
Zurück zum Zitat V.V. Brazhkin, Y.D. Fomin, A.G. Lyapin, V.N. Ryzhov, K. Trachenko, Two liquid states of matter: a dynamic line on a phase diagram. Phys. Rev. E. 85(3), 31203 (2012)CrossRef V.V. Brazhkin, Y.D. Fomin, A.G. Lyapin, V.N. Ryzhov, K. Trachenko, Two liquid states of matter: a dynamic line on a phase diagram. Phys. Rev. E. 85(3), 31203 (2012)CrossRef
21.
Zurück zum Zitat D. Bolmatov, V.V. Brazhkin, K. Trachenko, Thermodynamic behaviour of supercritical matter. Nat. Commun. 4 (2013) D. Bolmatov, V.V. Brazhkin, K. Trachenko, Thermodynamic behaviour of supercritical matter. Nat. Commun. 4 (2013)
22.
Zurück zum Zitat D. Bolmatov, M. Zhernenkov, D. Zav’yalov, S. Stoupin, Y.Q. Cai, A. Cunsolo, Revealing the mechanism of the viscous-to-elastic crossover in liquids. J. Phys. Chem. Lett. 6(15), 3048–3053 (2015)CrossRef D. Bolmatov, M. Zhernenkov, D. Zav’yalov, S. Stoupin, Y.Q. Cai, A. Cunsolo, Revealing the mechanism of the viscous-to-elastic crossover in liquids. J. Phys. Chem. Lett. 6(15), 3048–3053 (2015)CrossRef
25.
Zurück zum Zitat S.K. Godunov, E.I. Romenskii, Elements of Continuum Mechanics and Conservation Laws (Kluwer Academic/Plenum Publishers, 2003)CrossRef S.K. Godunov, E.I. Romenskii, Elements of Continuum Mechanics and Conservation Laws (Kluwer Academic/Plenum Publishers, 2003)CrossRef
28.
Zurück zum Zitat M. Greenspan, Propagation of sound in five monatomic gases. J. Acoust. Soc. Am. 28(4), 644–648 (1956)CrossRef M. Greenspan, Propagation of sound in five monatomic gases. J. Acoust. Soc. Am. 28(4), 644–648 (1956)CrossRef
29.
Zurück zum Zitat E.F. Toro, V.A. Titarev, Derivative Riemann solvers for systems of conservation laws and ADER methods. J. Comput. Phys. 212(1), 150–165 (2006)MathSciNetCrossRef E.F. Toro, V.A. Titarev, Derivative Riemann solvers for systems of conservation laws and ADER methods. J. Comput. Phys. 212(1), 150–165 (2006)MathSciNetCrossRef
31.
Zurück zum Zitat S.K. Godunov, A.A. Deribas, A.V. Zabrodin, N.S. Kozin, Hydrodynamic effects in colliding solids. J. Comput. Phys. 5(3), 517–539 (1970)CrossRef S.K. Godunov, A.A. Deribas, A.V. Zabrodin, N.S. Kozin, Hydrodynamic effects in colliding solids. J. Comput. Phys. 5(3), 517–539 (1970)CrossRef
Metadaten
Titel
A Unified Hyperbolic Formulation for Viscous Fluids and Elastoplastic Solids
verfasst von
Michael Dumbser
Ilya Peshkov
Evgeniy Romenski
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-91548-7_34

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.