Skip to main content
Erschienen in: Autonomous Robots 7/2020

14.07.2020

A unified kinematics modeling, optimization and control of universal robots: from serial and parallel manipulators to walking, rolling and hybrid robots

verfasst von: Mahmoud Tarokh

Erschienen in: Autonomous Robots | Ausgabe 7/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper develops a unified kinematics modeling, optimization and control that is applicable to a wide range of autonomous and non-autonomous robots. These include hybrid robots that combine two or more modes of operations, such as combination of walking and rolling, or rolling and manipulation, as well as parallel robots in various configurations. The equations of motion are derived in compact forms that embed an optimization criterion. These equations are used to obtain various useful forms of the robot kinematics such as recursive, body and limb-end kinematic forms. Using the modeling, actuation and control equations are derived that ensure traversing a desired path while maintaining balanced operations and tip-over avoidance. Various simulation results are provided for a hybrid rolling-walking robot, which demonstrate the capabilities and effectiveness of the developed methodologies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
In this paper we use the notation \( T_{A,B} \) to describe frame B relative to frame A, or the transformation from frame \( A \) to frame \( B \). This notation is equivalent to \( {}_{B}^{A} T \) used in some books, e.g. (Craig 2018).
 
Literatur
Zurück zum Zitat Alamdari, A., Zhou, X., & Koovi, V. N. (2013). Kinematic modelling, analysis and control of highly reconfigurable articulated wheeled vehicles. In Proc. ASME 2013 Int. Design Engineering Technical Conf., pp. 1–6. Alamdari, A., Zhou, X., & Koovi, V. N. (2013). Kinematic modelling, analysis and control of highly reconfigurable articulated wheeled vehicles. In Proc. ASME 2013 Int. Design Engineering Technical Conf., pp. 1–6.
Zurück zum Zitat Bellicoseo, C. D., Jenelten, F., Gehring, C., & Hutter, M. (2018). Dynamic locomotion through online nonlinear motion optimization for quadruped robots. IEEE Robotics and Automation Letters, 3(3), 2261–2268.CrossRef Bellicoseo, C. D., Jenelten, F., Gehring, C., & Hutter, M. (2018). Dynamic locomotion through online nonlinear motion optimization for quadruped robots. IEEE Robotics and Automation Letters, 3(3), 2261–2268.CrossRef
Zurück zum Zitat Buttner, T., Roennau, A., Heppner, G., Pfotzer, L., & Dillmann, R. (2016). Bio-inspired optimization of kinematic models for multi-legged walking robots. In: 6th IEEE RAS/EMBS Int. Conf. on Biomedical Robotics and Biomechatronics. Buttner, T., Roennau, A., Heppner, G., Pfotzer, L., & Dillmann, R. (2016). Bio-inspired optimization of kinematic models for multi-legged walking robots. In: 6th IEEE RAS/EMBS Int. Conf. on Biomedical Robotics and Biomechatronics.
Zurück zum Zitat Cameron, J., Jain, A., Huntsberger, T., Sohl, G., & Mukherjee, R. (2009). Vehicle-terrain interaction modeling and validation for planetary rovers. NASA Jet Propulsion Laboratory Publications 10-15, https://dartslab.jpl.nasa.gov. Cameron, J., Jain, A., Huntsberger, T., Sohl, G., & Mukherjee, R. (2009). Vehicle-terrain interaction modeling and validation for planetary rovers. NASA Jet Propulsion Laboratory Publications 10-15, https://​dartslab.​jpl.​nasa.​gov.
Zurück zum Zitat Cordes, F., Dettmann, A., & Kirchner, A. (2011). Locomotion modes for a hybrid wheeled-leg planetary rover. In Proc. of IEEE Int. Conf. on Robotics and Biomimetics, Vol. 1, pp. 654–659. Cordes, F., Dettmann, A., & Kirchner, A. (2011). Locomotion modes for a hybrid wheeled-leg planetary rover. In Proc. of IEEE Int. Conf. on Robotics and Biomimetics, Vol. 1, pp. 654–659.
Zurück zum Zitat Craig, J.J. (2018). Introduction to Robotics, Mechanics and Control. London, UK: Pearson Publishers. Craig, J.J. (2018). Introduction to Robotics, Mechanics and Control. London, UK: Pearson Publishers.
Zurück zum Zitat Cully, A., Clune, J., Tarapore, D., & Mouret, J.-B. (2015). Robots that can adapt like animals”. Nature, 521, 503–507.CrossRef Cully, A., Clune, J., Tarapore, D., & Mouret, J.-B. (2015). Robots that can adapt like animals”. Nature, 521, 503–507.CrossRef
Zurück zum Zitat Dai, J.-M., Liu, T.-A., Lin, H.-Y. (2017). Road surface recognition for rout recommendation. In Proc. IEEE Intelligent Vehicles Symposium, pp. 121–126. Dai, J.-M., Liu, T.-A., Lin, H.-Y. (2017). Road surface recognition for rout recommendation. In Proc. IEEE Intelligent Vehicles Symposium, pp. 121–126.
Zurück zum Zitat Dasgupta, B., & Mruthyunjaya, T. S. (2000). The Stewart latform manipulators: A review. Mechanism and Machine Theory, 35(1), 15–40.MathSciNetMATHCrossRef Dasgupta, B., & Mruthyunjaya, T. S. (2000). The Stewart latform manipulators: A review. Mechanism and Machine Theory, 35(1), 15–40.MathSciNetMATHCrossRef
Zurück zum Zitat Fujita, T., & Sasaki, T. (2017). Development of hexapod tracked mobile robot and its hybrid locomotion with object-carrying. In IEEE Int. Symp. on Robotics and Intelligent Sensors. Fujita, T., & Sasaki, T. (2017). Development of hexapod tracked mobile robot and its hybrid locomotion with object-carrying. In IEEE Int. Symp. on Robotics and Intelligent Sensors.
Zurück zum Zitat Gonzales de Santos, P., Estremera, J., & Garcia, E. (2003). The SILO4-A true walking robot for comparative study of walking machines techniques. IEEE Robotics and Automation Magazine, 10(4), 23–32.CrossRef Gonzales de Santos, P., Estremera, J., & Garcia, E. (2003). The SILO4-A true walking robot for comparative study of walking machines techniques. IEEE Robotics and Automation Magazine, 10(4), 23–32.CrossRef
Zurück zum Zitat Gonzales, R., & Iagnemma, K. (2018). Slippage estimation and compensation for planetary exploration rovers. Journal of Field Robotics, 35, 564–577.CrossRef Gonzales, R., & Iagnemma, K. (2018). Slippage estimation and compensation for planetary exploration rovers. Journal of Field Robotics, 35, 564–577.CrossRef
Zurück zum Zitat Gonzales, A., & Zielinska, T. (2012). Postural equilibrium criteria concerning feet properties for bi-ped robots. Journal of Automation, Mobile Robotics & Intelligent Systems, 6(1), 22–27. Gonzales, A., & Zielinska, T. (2012). Postural equilibrium criteria concerning feet properties for bi-ped robots. Journal of Automation, Mobile Robotics & Intelligent Systems, 6(1), 22–27.
Zurück zum Zitat Grand, C., BenAmar, F., Plumet, F., & Bidaud, P. (2000). Stability control of a wheel-legged mini-rover. In Proc of Int. Conf. on Climbing and Walking Robots. Grand, C., BenAmar, F., Plumet, F., & Bidaud, P. (2000). Stability control of a wheel-legged mini-rover. In Proc of Int. Conf. on Climbing and Walking Robots.
Zurück zum Zitat Iagnemma, K., Rzepniewski, A., Dubowsky, S.,Huntsberger, T., Pirjanian, P., & Schenker, P. (2000). Mobile robot kinematic reconfigurability for rough-terrain. In Proceedings of the SPIE Symposium on Sensor Fusion and Decentralized Control in Robotic Systems III. Iagnemma, K., Rzepniewski, A., Dubowsky, S.,Huntsberger, T., Pirjanian, P., & Schenker, P. (2000). Mobile robot kinematic reconfigurability for rough-terrain. In Proceedings of the SPIE Symposium on Sensor Fusion and Decentralized Control in Robotic Systems III.
Zurück zum Zitat Jehanno, J-M., Cully, A., Grand, C., and Mouret, J-B. (2014). Design of a wheel-legged hexapod robot for creative adaptation. World Scientific Publishing, 20(6). Jehanno, J-M., Cully, A., Grand, C., and Mouret, J-B. (2014). Design of a wheel-legged hexapod robot for creative adaptation. World Scientific Publishing, 20(6).
Zurück zum Zitat Kelly, A. (2012). A vector algebra formulation of mobile robot velocity kinematics. In Proc. 2012 Int. Conf. Field and Service Robots. Kelly, A. (2012). A vector algebra formulation of mobile robot velocity kinematics. In Proc. 2012 Int. Conf. Field and Service Robots.
Zurück zum Zitat Kelly, A., & Seegmiller, N. (2015). Recursive kinematic propagation for wheeled mobile robots. International Journal of Robotics Research, 34(3), 288–313.CrossRef Kelly, A., & Seegmiller, N. (2015). Recursive kinematic propagation for wheeled mobile robots. International Journal of Robotics Research, 34(3), 288–313.CrossRef
Zurück zum Zitat Khusainov, R., Shimchik, I., Afanasyev, I., & Magid, E. (2016). 3D Modelling of biped robot locomotion with walking primitives approach in Simulink environment. Lecture Notes in Electrical Engineering, 383, 287–304.CrossRef Khusainov, R., Shimchik, I., Afanasyev, I., & Magid, E. (2016). 3D Modelling of biped robot locomotion with walking primitives approach in Simulink environment. Lecture Notes in Electrical Engineering, 383, 287–304.CrossRef
Zurück zum Zitat Morell, A., Tarokh, M., & Acosta, L. (2013). Solving the forward kinematics problem in parallel robots using Support Vector Regression. Engineering Applications of Artificial Intelligence, 26(7), 1698–1706.CrossRef Morell, A., Tarokh, M., & Acosta, L. (2013). Solving the forward kinematics problem in parallel robots using Support Vector Regression. Engineering Applications of Artificial Intelligence, 26(7), 1698–1706.CrossRef
Zurück zum Zitat Muir, P. F., & Neuman, C. P. (1991). Kinematic modeling of wheeled mobile robots. Journal of Robotic Systems, 44(2), 281–340.CrossRef Muir, P. F., & Neuman, C. P. (1991). Kinematic modeling of wheeled mobile robots. Journal of Robotic Systems, 44(2), 281–340.CrossRef
Zurück zum Zitat Nakamura, N. (1991). Advanced Robotics-Redundancy and Optimization, Chapter 4. Addison-Wesley. Nakamura, N. (1991). Advanced Robotics-Redundancy and Optimization, Chapter 4. Addison-Wesley.
Zurück zum Zitat Omer, R., & Fu, L. (2010).An automatic image recognition system for winter road surface condition classification. In IEEE Int. Conf. Intelligent Transportation Systems, pp. 1375–1379. Omer, R., & Fu, L. (2010).An automatic image recognition system for winter road surface condition classification. In IEEE Int. Conf. Intelligent Transportation Systems, pp. 1375–1379.
Zurück zum Zitat Ortiz, J. S., Aldás, J. V., & Andaluz, V. H. (2017). Mobile manipulators for cooperative transportation of objects in common. In Y. Gao, S. Fallah, Y. Jin, & C. Lekakou (Eds.), Towards autonomous robotic systems. TAROS 2017. Lecture Notes in Computer Science (Vol. 10454). Berlin: Springer. Ortiz, J. S., Aldás, J. V., & Andaluz, V. H. (2017). Mobile manipulators for cooperative transportation of objects in common. In Y. Gao, S. Fallah, Y. Jin, & C. Lekakou (Eds.), Towards autonomous robotic systems. TAROS 2017. Lecture Notes in Computer Science (Vol. 10454). Berlin: Springer.
Zurück zum Zitat Qian, Y., Almazan, E. J., & Elder, J. H. (2016). Evaluating features and classifiers for road weather condition analysis. In IEEE Int. Conf. Image Processing (ICIP), pp. 4403–4407. Qian, Y., Almazan, E. J., & Elder, J. H. (2016). Evaluating features and classifiers for road weather condition analysis. In IEEE Int. Conf. Image Processing (ICIP), pp. 4403–4407.
Zurück zum Zitat Rajagopalan, R. (1997). A generic kinematic formulation for wheeled mobile robots. Journal of Robotic Systems, 14(2), 77–91.MATHCrossRef Rajagopalan, R. (1997). A generic kinematic formulation for wheeled mobile robots. Journal of Robotic Systems, 14(2), 77–91.MATHCrossRef
Zurück zum Zitat Reid, W., Prez-Grau, T. J., Goktogan, A. L., & Sukkarieh, S. (2016). Actively articulated suspension for a wheel-on-Leg rover operating on a Martian analog surface. In IEEE Int. Conf. Robotics and Automation, pp. 5596-5602. Reid, W., Prez-Grau, T. J., Goktogan, A. L., & Sukkarieh, S. (2016). Actively articulated suspension for a wheel-on-Leg rover operating on a Martian analog surface. In IEEE Int. Conf. Robotics and Automation, pp. 5596-5602.
Zurück zum Zitat Ryu, S.-K., Kim, T., Bae, E., & Lee, S.-R. (2014). Algorithms and experiments fpor vision-based recognition of road surface. Journal of Emerging Trends in Computing and Information Science, 5(10), 739–745. Ryu, S.-K., Kim, T., Bae, E., & Lee, S.-R. (2014). Algorithms and experiments fpor vision-based recognition of road surface. Journal of Emerging Trends in Computing and Information Science, 5(10), 739–745.
Zurück zum Zitat Shao, X.-S., Yang, Y.-P., & Wang, W. (2012). Ground substrate classification and adaptive walking through interaction dynamics for legged robots. Journal of Harbin Institute Technology, 19(3), 100–108. Shao, X.-S., Yang, Y.-P., & Wang, W. (2012). Ground substrate classification and adaptive walking through interaction dynamics for legged robots. Journal of Harbin Institute Technology, 19(3), 100–108.
Zurück zum Zitat Shin, D. H., & Park, K. H. (2001). Velocity kinematic modeling for wheeled mobile robots. In Proceedings 2001 IEEE International Conf. Robotics and Automation, Vol. 4, pp. 3516–3522. Shin, D. H., & Park, K. H. (2001). Velocity kinematic modeling for wheeled mobile robots. In Proceedings 2001 IEEE International Conf. Robotics and Automation, Vol. 4, pp. 3516–3522.
Zurück zum Zitat Shkolnik, A., & Tedrake, R. (2007). Inverse kinematics for a point-foot quadruped robot with dynamic Redundancy Resolution. In IEEE International Conference on Robotics and Automation, Rome. Shkolnik, A., & Tedrake, R. (2007). Inverse kinematics for a point-foot quadruped robot with dynamic Redundancy Resolution. In IEEE International Conference on Robotics and Automation, Rome.
Zurück zum Zitat Siegwart, R., Lamon, P., Estier, T., Lauria, M., & Piguet, R. (2002). Innovative design for wheeled locomotion in rough terrain. Robotics and Autonomous Systems, 40, 151–162.CrossRef Siegwart, R., Lamon, P., Estier, T., Lauria, M., & Piguet, R. (2002). Innovative design for wheeled locomotion in rough terrain. Robotics and Autonomous Systems, 40, 151–162.CrossRef
Zurück zum Zitat Smith, J., Sharf, I., & Trentini, M. (2006). Paw: A hybrid wheeled-leg robot. In Proc. of IEEE Int. Conf. on Robotics and Automation. Smith, J., Sharf, I., & Trentini, M. (2006). Paw: A hybrid wheeled-leg robot. In Proc. of IEEE Int. Conf. on Robotics and Automation.
Zurück zum Zitat Tarokh, M. (2007). Real time forward kinematics solutions for general Stewart platforms. In IEEE Int. Conf. Robot. Autom., pp. 901–906. Tarokh, M. (2007). Real time forward kinematics solutions for general Stewart platforms. In IEEE Int. Conf. Robot. Autom., pp. 901–906.
Zurück zum Zitat Tarokh, M., Ho, H., & Bouloubasis, A. (2013). Systematic kinematics analysis and balance control of high mobility rovers over rough terrain. Journal of Robotics and Autonomous Systems, 61, 13–24.CrossRef Tarokh, M., Ho, H., & Bouloubasis, A. (2013). Systematic kinematics analysis and balance control of high mobility rovers over rough terrain. Journal of Robotics and Autonomous Systems, 61, 13–24.CrossRef
Zurück zum Zitat Tarokh, M., & Lee, M. (2009). Systematic method for kinematics modeling of legged robots on uneven terrain. International Journal of Control and Automation, 2(2), 9–17. Tarokh, M., & Lee, M. (2009). Systematic method for kinematics modeling of legged robots on uneven terrain. International Journal of Control and Automation, 2(2), 9–17.
Zurück zum Zitat Tarokh, M., & McDermott, G. (2005). Kinematics modeling and analysis of articulated rovers. IEEE Transactions on Robotics, 21(4), 439–454.CrossRef Tarokh, M., & McDermott, G. (2005). Kinematics modeling and analysis of articulated rovers. IEEE Transactions on Robotics, 21(4), 439–454.CrossRef
Zurück zum Zitat Tarokh, M., & McDermott, G. (2007). A systematic approach to kinematics modeling of high mobility wheeled rovers. In Proc. IEEE Int. Conf. Robotics and Automation, pp 4905–4910. Tarokh, M., & McDermott, G. (2007). A systematic approach to kinematics modeling of high mobility wheeled rovers. In Proc. IEEE Int. Conf. Robotics and Automation, pp 4905–4910.
Zurück zum Zitat Tarokh, M., McDermott, G., Hayati, S., & Hung, J. (1999). Kinematic modeling of a high mobility Mars rover. In Proc. IEEE Int. Conf. Robotics and Automation, pp. 992–998. Tarokh, M., McDermott, G., Hayati, S., & Hung, J. (1999). Kinematic modeling of a high mobility Mars rover. In Proc. IEEE Int. Conf. Robotics and Automation, pp. 992–998.
Zurück zum Zitat Tarokh, M., McDermott, G., & Mireles, L. (2006). Balance control of articulated rovers with active suspension. In Proc. 8th IFAC-IEEE Symposium on Robot Control, Vol. FrP-2.1-2, pp. 1–6. Tarokh, M., McDermott, G., & Mireles, L. (2006). Balance control of articulated rovers with active suspension. In Proc. 8th IFAC-IEEE Symposium on Robot Control, Vol. FrP-2.1-2, pp. 1–6.
Zurück zum Zitat Tsai, M.S., Shiau, T. N., & Tsai, Y. J. (2003). Direct kinematic analysis of a 3-PRS parallel mechanism. Mech. Mach. Theory, 38, 71–83.MATHCrossRef Tsai, M.S., Shiau, T. N., & Tsai, Y. J. (2003). Direct kinematic analysis of a 3-PRS parallel mechanism. Mech. Mach. Theory, 38, 71–83.MATHCrossRef
Zurück zum Zitat Winkler, A. W., Bellicoso, C. D., Hutter, M., & Buchli, J. (2018). Gait and trajectory optimization for legged systems through phased-based end- effector parameterization. IEEE Robotics and Automation Letters, 3(3), 1560–1567.CrossRef Winkler, A. W., Bellicoso, C. D., Hutter, M., & Buchli, J. (2018). Gait and trajectory optimization for legged systems through phased-based end- effector parameterization. IEEE Robotics and Automation Letters, 3(3), 1560–1567.CrossRef
Zurück zum Zitat Winkler, A. W., Farshidian, F., Pardo, D., Neunert, M., & Buchli, J. (2017). Fast trajectory optimization for legged robots using vertex-based ZMP constraints. IEEE Robotics and Automation Letters, 2(4), 2201–2208.CrossRef Winkler, A. W., Farshidian, F., Pardo, D., Neunert, M., & Buchli, J. (2017). Fast trajectory optimization for legged robots using vertex-based ZMP constraints. IEEE Robotics and Automation Letters, 2(4), 2201–2208.CrossRef
Zurück zum Zitat Wu, A. A., Huh, T. M., Mukherjee, R., & Cutsosky, M. (2016). Integrated ground reaction force sensing and classification for small legged robots. IEEE Robotics & Automation Letters, 1, 1125–1132.CrossRef Wu, A. A., Huh, T. M., Mukherjee, R., & Cutsosky, M. (2016). Integrated ground reaction force sensing and classification for small legged robots. IEEE Robotics & Automation Letters, 1, 1125–1132.CrossRef
Zurück zum Zitat Ylonen, S., & Halme, A. (2002). Further development and testing of the hybrid locomotion of Workpartner robot. In Proc of Int. Conf. on Climbing on Walking Robots (CLAWAR). Ylonen, S., & Halme, A. (2002). Further development and testing of the hybrid locomotion of Workpartner robot. In Proc of Int. Conf. on Climbing on Walking Robots (CLAWAR).
Zurück zum Zitat Yuan, J., & Hirose, S. (2004). Research on leg-wheel hybrid stair-climbing robot, zero carrier. In IEEE Int. Conf. on Robotics and Biomimetics. Yuan, J., & Hirose, S. (2004). Research on leg-wheel hybrid stair-climbing robot, zero carrier. In IEEE Int. Conf. on Robotics and Biomimetics.
Zurück zum Zitat Zhang, S., Hu, Y., Xing, Y. (2016). Modified kinematic models for wheel-legged robot considering the rolling effect during leg-support phase. In Proc. 36th Chinese Control Conf. Zhang, S., Hu, Y., Xing, Y. (2016). Modified kinematic models for wheel-legged robot considering the rolling effect during leg-support phase. In Proc. 36th Chinese Control Conf.
Zurück zum Zitat Zhao, H, Wu, H., & Chen, L. (2017). Road surface recognition based on SVM optimization and image segmentation processing. Hindawi Journal of Advanced Transportation, Article ID 6458495, pp. 1–21. Zhao, H, Wu, H., & Chen, L. (2017). Road surface recognition based on SVM optimization and image segmentation processing. Hindawi Journal of Advanced Transportation, Article ID 6458495, pp. 1–21.
Zurück zum Zitat Zhong, G., Deng, H., Xin, G., & Wang, G. (2016). Dynamic hybrid control of a hexapod walking robot: Experimental verification. IEEE Transactions on Industrial Electronics, 63(8), 5001–5011. Zhong, G., Deng, H., Xin, G., & Wang, G. (2016). Dynamic hybrid control of a hexapod walking robot: Experimental verification. IEEE Transactions on Industrial Electronics, 63(8), 5001–5011.
Metadaten
Titel
A unified kinematics modeling, optimization and control of universal robots: from serial and parallel manipulators to walking, rolling and hybrid robots
verfasst von
Mahmoud Tarokh
Publikationsdatum
14.07.2020
Verlag
Springer US
Erschienen in
Autonomous Robots / Ausgabe 7/2020
Print ISSN: 0929-5593
Elektronische ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-020-09929-6

Weitere Artikel der Ausgabe 7/2020

Autonomous Robots 7/2020 Zur Ausgabe

Neuer Inhalt