Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Computational Mechanics 6/2015

01.06.2015 | Original Paper

A unified monolithic approach for multi-fluid flows and fluid–structure interaction using the Particle Finite Element Method with fixed mesh

verfasst von: P. Becker, S. R. Idelsohn, E. Oñate

Erschienen in: Computational Mechanics | Ausgabe 6/2015

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

This paper describes a strategy to solve multi-fluid and fluid–structure interaction (FSI) problems using Lagrangian particles combined with a fixed finite element (FE) mesh. Our approach is an extension of the fluid-only PFEM-2 (Idelsohn et al., Eng Comput 30(2):2–2, 2013; Idelsohn et al., J Numer Methods Fluids, 2014) which uses explicit integration over the streamlines to improve accuracy. As a result, the convective term does not appear in the set of equations solved on the fixed mesh. Enrichments in the pressure field are used to improve the description of the interface between phases.
Literatur
1.
Zurück zum Zitat Ausas RF, Buscaglia GC, Idelsohn SR (2012) A new enrichment space for the treatment of discontinuous pressures in multi-fluid flows. Int J Numer Method Fluids 70(7):829–850 MathSciNetCrossRef Ausas RF, Buscaglia GC, Idelsohn SR (2012) A new enrichment space for the treatment of discontinuous pressures in multi-fluid flows. Int J Numer Method Fluids 70(7):829–850 MathSciNetCrossRef
2.
Zurück zum Zitat Belytschko T, Liu WK, Moran B, Elkhodary K (2013) Nonlinear finite elements for continua and structures. Wiley, New York MATH Belytschko T, Liu WK, Moran B, Elkhodary K (2013) Nonlinear finite elements for continua and structures. Wiley, New York MATH
3.
Zurück zum Zitat Brumley DR, Willcox M, Sader JE (2010) Oscillation of cylinders of rectangular cross section immersed in fluid. Phys Fluids 22(5):052,001 (1994-present) CrossRef Brumley DR, Willcox M, Sader JE (2010) Oscillation of cylinders of rectangular cross section immersed in fluid. Phys Fluids 22(5):052,001 (1994-present) CrossRef
4.
Zurück zum Zitat Codina R (2000) Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods. Comput Method Appl Mech 190(13):1579–1599 MATHMathSciNetCrossRef Codina R (2000) Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods. Comput Method Appl Mech 190(13):1579–1599 MATHMathSciNetCrossRef
5.
Zurück zum Zitat Codina R, Badia S (2006) On some pressure segregation methods of fractional-step type for the finite element approximation of incompressible flow problems. Comput Method Appl Mech 195(23):2900–2918 MATHMathSciNetCrossRef Codina R, Badia S (2006) On some pressure segregation methods of fractional-step type for the finite element approximation of incompressible flow problems. Comput Method Appl Mech 195(23):2900–2918 MATHMathSciNetCrossRef
6.
Zurück zum Zitat Coppola H (2009) A finite element model for free surface and two fluid flows on fixed meshes. Ph.D. thesis, Universitat Politècnica de Catalunya Coppola H (2009) A finite element model for free surface and two fluid flows on fixed meshes. Ph.D. thesis, Universitat Politècnica de Catalunya
7.
Zurück zum Zitat Dadvand P, Rossi R, Oñate E (2010) An object-oriented environment for developing finite element codes for multi-disciplinary applications. Arch Comput Method Eng 17(3):253–297 MATHCrossRef Dadvand P, Rossi R, Oñate E (2010) An object-oriented environment for developing finite element codes for multi-disciplinary applications. Arch Comput Method Eng 17(3):253–297 MATHCrossRef
8.
9.
Zurück zum Zitat Donea J, Huerta H (2003) Finite element methods for flow problems. Wiley, New York CrossRef Donea J, Huerta H (2003) Finite element methods for flow problems. Wiley, New York CrossRef
11.
Zurück zum Zitat Guermond JL, Quartapelle L (2000) A projection fem for variable density incompressible flows. J Comput Phys 165(1):167–188 MATHMathSciNetCrossRef Guermond JL, Quartapelle L (2000) A projection fem for variable density incompressible flows. J Comput Phys 165(1):167–188 MATHMathSciNetCrossRef
12.
Zurück zum Zitat He X, Chen S, Zhang R (1999) A lattice boltzmann scheme for incompressible multiphase flow and its application in simulation of rayleigh-taylor instability. J Comput Phys 152(2):642–663 MATHMathSciNetCrossRef He X, Chen S, Zhang R (1999) A lattice boltzmann scheme for incompressible multiphase flow and its application in simulation of rayleigh-taylor instability. J Comput Phys 152(2):642–663 MATHMathSciNetCrossRef
13.
Zurück zum Zitat Idelsohn S, Nigro N, Gimenez J, Rossi R, Marti J (2013) A fast and accurate method to solve the incompressible Navier–Stokes equations. Eng Comput 30(2):2–2 Idelsohn S, Nigro N, Gimenez J, Rossi R, Marti J (2013) A fast and accurate method to solve the incompressible Navier–Stokes equations. Eng Comput 30(2):2–2
14.
Zurück zum Zitat Idelsohn SR, Marti J, Becker P, Oñate E (2014) Analysis of multifluid flows with large time steps using the particle finite element method. Int J Numer Methods Fluids Idelsohn SR, Marti J, Becker P, Oñate E (2014) Analysis of multifluid flows with large time steps using the particle finite element method. Int J Numer Methods Fluids
15.
Zurück zum Zitat Idelsohn SR, Marti J, Limache A, Oñate E (2008) Unified lagrangian formulation for elastic solids and incompressible fluids: application to fluid–structure interaction problems via the pfem. Comput Methods Appl Mech 197(19):1762–1776 MATHMathSciNetCrossRef Idelsohn SR, Marti J, Limache A, Oñate E (2008) Unified lagrangian formulation for elastic solids and incompressible fluids: application to fluid–structure interaction problems via the pfem. Comput Methods Appl Mech 197(19):1762–1776 MATHMathSciNetCrossRef
16.
Zurück zum Zitat Oñate E, Franci A, Carbonell JM (2014) Lagrangian formulation for finite element analysis of quasi-incompressible fluids with reduced mass losses. Int J Numer Methods Fluids 74(10):699–731 CrossRef Oñate E, Franci A, Carbonell JM (2014) Lagrangian formulation for finite element analysis of quasi-incompressible fluids with reduced mass losses. Int J Numer Methods Fluids 74(10):699–731 CrossRef
17.
Zurück zum Zitat Oñate E, Franci A, Carbonell JM (2014) A particle finite element method for analysis of industrial forming processes. Comput Mech 54:1–23 CrossRef Oñate E, Franci A, Carbonell JM (2014) A particle finite element method for analysis of industrial forming processes. Comput Mech 54:1–23 CrossRef
18.
Zurück zum Zitat Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44 MATHMathSciNet Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44 MATHMathSciNet
19.
Zurück zum Zitat Turek S, Hron J (2006) Proposal for numerical benchmarking of fluid–structure interaction between an elastic object and laminar incompressible flow. Springer, Berlin CrossRef Turek S, Hron J (2006) Proposal for numerical benchmarking of fluid–structure interaction between an elastic object and laminar incompressible flow. Springer, Berlin CrossRef
20.
Zurück zum Zitat Van Eysden CA, Sader JE (2006) Resonant frequencies of a rectangular cantilever beam immersed in a fluid. J Appl Phys 100(11):114,916 CrossRef Van Eysden CA, Sader JE (2006) Resonant frequencies of a rectangular cantilever beam immersed in a fluid. J Appl Phys 100(11):114,916 CrossRef
21.
Zurück zum Zitat Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4(1):389–396 MATHMathSciNetCrossRef Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4(1):389–396 MATHMathSciNetCrossRef
22.
Zurück zum Zitat Zienkiewicz O, Taylor R, Zhu JZ (2006) The finite element method: its basic and fundamentals, vol 1, 6th edn. Elsevier, New York Zienkiewicz O, Taylor R, Zhu JZ (2006) The finite element method: its basic and fundamentals, vol 1, 6th edn. Elsevier, New York
Metadaten
Titel
A unified monolithic approach for multi-fluid flows and fluid–structure interaction using the Particle Finite Element Method with fixed mesh
verfasst von
P. Becker
S. R. Idelsohn
E. Oñate
Publikationsdatum
01.06.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 6/2015
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-014-1107-0

Weitere Artikel der Ausgabe 6/2015

Computational Mechanics 6/2015 Zur Ausgabe