Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

03.03.2018 | Sonderheft 4/2019

Cluster Computing 4/2019

A unified neural model for review-based rating prediction by leveraging multi-criteria ratings and review text

Zeitschrift:
Cluster Computing > Sonderheft 4/2019
Autoren:
Yonggang Ding, Shijun Li, Wei Yu, Jun Wang, Mengjun Liu

Abstract

The problem of personalized review-based rating prediction aims at inferring users’ ratings over their unrated items using historical ratings and reviews. Most of existing methods solve this problem by integrating latent factor model and topic model to learn interpretable user and items factors. However, these methods ignore the word order in reviews and the learned topic factors are limited to review text, which cannot fully reveal the complicated interaction relations between reviews and ratings. Moreover, they only utilize overall ratings instead of multi-criteria ratings which can represent more detailed preferences of users. In this paper, we propose a deep learning framework named NRPMT in which multi-criteria ratings and user reviews can complement each other to improve recommendation accuracy. The proposed model can simultaneously predict accurate ratings and generate review content expressing user experience and feelings. For rating prediction, a neural factorization machines-based regression model are used to project the feature interactions between user, item and criteria into rating. For review generation, gated recurrent neural networks are employed to “translate” the feature representation of user, item and criteria into a review. Extensive experiments on three real-world datasets demonstrate that NRPMT achieves significant improvement over the several competitive baselines.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Sonderheft 4/2019

Cluster Computing 4/2019 Zur Ausgabe

Premium Partner

    Bildnachweise