Skip to main content
Erschienen in: Quantum Information Processing 8/2020

01.08.2020

A unitary operator construction solution based on Pauli group for maximal dense coding with a class of symmetric states

verfasst von: Wenjie Liu, Junxiu Chen, Wenbin Yu, Zhihao Liu, Hanwu Chen

Erschienen in: Quantum Information Processing | Ausgabe 8/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Quantum dense coding plays an important role in quantum cryptography communication, and how to select a set of appropriate unitary operators to encode message is the primary work in the design of quantum communication protocols. Shukla et al. proposed a preliminary method for unitary operator construction based on Pauli group under multiplication, which is used for dense coding in quantum dialogue. However, this method lacks feasible steps or conditions and cannot construct all the possible unitary operator sets. In this study, a feasible solution of constructing unitary operator sets for quantum maximal dense coding is proposed, which aims to use minimum qubits to maximally encode a class of t-qubit symmetric states. These states have an even number of superposition items, and there is at least one set of \(\left\lceil {{t \over 2}} \right\rceil \) qubits whose superposition items are orthogonal to each other. Firstly, we propose the procedure and the corresponding algorithm for constructing \({2^{t}}\)-order multiplicative modified generalized Pauli subgroups (multiplicative MGP subgroups). Then, two conditions for t-qubit symmetric states are given to select appropriate unitary operator sets from the above subgroups. Finally, we take 3-qubit GHZ, 4-qubit W, 4-qubit cluster and 5-qubit cluster states as examples and demonstrate how to find all unitary operator sets for maximal dense coding through our construction solution, which shows that our solution is feasible and convenient.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Bennett, C.H., Brassard, G.: Quantum Cryptography : Public Key Distribution and Coin Tossing, pp. 7–11. Elsevier B.V, Amsterdam (2014)MATH Bennett, C.H., Brassard, G.: Quantum Cryptography : Public Key Distribution and Coin Tossing, pp. 7–11. Elsevier B.V, Amsterdam (2014)MATH
2.
Zurück zum Zitat Paul, J., Sebastien, K.J., Anthony, L., Philippe, G., Eleni, D.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics. 7(5), 378–381 (2013)CrossRef Paul, J., Sebastien, K.J., Anthony, L., Philippe, G., Eleni, D.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics. 7(5), 378–381 (2013)CrossRef
3.
Zurück zum Zitat Vlachou, C., Krawec, W., Mateus, P., Paunkovic, N., Souto, A.: Quantum key distribution with quantum walks. Quantum Inf. Process. 17(11), 288–325 (2018)ADSMathSciNetCrossRef Vlachou, C., Krawec, W., Mateus, P., Paunkovic, N., Souto, A.: Quantum key distribution with quantum walks. Quantum Inf. Process. 17(11), 288–325 (2018)ADSMathSciNetCrossRef
4.
Zurück zum Zitat Zhang, K., Zhang, X., Jia, H., Zhang, L.: A new n-party quantum secret sharing model based on multiparty entangled states. Quantum Inf. Process. 18(3), 21 (2019)ADSMathSciNetMATH Zhang, K., Zhang, X., Jia, H., Zhang, L.: A new n-party quantum secret sharing model based on multiparty entangled states. Quantum Inf. Process. 18(3), 21 (2019)ADSMathSciNetMATH
5.
6.
Zurück zum Zitat Zhang, K., Zhang, L., Song, T., Yang, Y.: A potential application in quantum networks-deterministic quantum operation sharing schemes with Bell states. Sci. China Phy. Mech. Astron. 59(6), 660302 (2016)CrossRef Zhang, K., Zhang, L., Song, T., Yang, Y.: A potential application in quantum networks-deterministic quantum operation sharing schemes with Bell states. Sci. China Phy. Mech. Astron. 59(6), 660302 (2016)CrossRef
8.
Zurück zum Zitat Liu, W.J., Chen, H.W., Li, Z.Q., Liu, Z.H.: Efficient quantum secure direct communication with authentication. Chin. Phys. Lett. 25(7), 2354–2357 (2008)ADSCrossRef Liu, W.J., Chen, H.W., Li, Z.Q., Liu, Z.H.: Efficient quantum secure direct communication with authentication. Chin. Phys. Lett. 25(7), 2354–2357 (2008)ADSCrossRef
9.
Zurück zum Zitat Yin, L.G., Pan, D., Long, G.L.: Quantum secure direct communication: a survey of basic principle and recent development. J. Fizik Malaysia 39(2), 10001–10006 (2018) Yin, L.G., Pan, D., Long, G.L.: Quantum secure direct communication: a survey of basic principle and recent development. J. Fizik Malaysia 39(2), 10001–10006 (2018)
10.
Zurück zum Zitat Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., Long, G.L.: Experimental quantum secure direct communication with single photons. Light-Sci. Appl. 5, e16144 (2016)CrossRef Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., Long, G.L.: Experimental quantum secure direct communication with single photons. Light-Sci. Appl. 5, e16144 (2016)CrossRef
11.
Zurück zum Zitat Liu, W.J., Chen, H.W., Ma, T.H., Li, Z.Q., Liu, Z.H., Hu, W.B.: An efficient deterministic secure quantum communication scheme based on cluster states and identity authentication. Chin. Phys. B 18(10), 4105–4109 (2009)ADSCrossRef Liu, W.J., Chen, H.W., Ma, T.H., Li, Z.Q., Liu, Z.H., Hu, W.B.: An efficient deterministic secure quantum communication scheme based on cluster states and identity authentication. Chin. Phys. B 18(10), 4105–4109 (2009)ADSCrossRef
12.
Zurück zum Zitat Huang, W., Su, Q., Liu, B., He, Y.H., Fan, F., Xu, B.J.: Efficient multiparty quantum key agreement with collective detection. Sci. Rep. 7(1), 15264 (2017)ADSCrossRef Huang, W., Su, Q., Liu, B., He, Y.H., Fan, F., Xu, B.J.: Efficient multiparty quantum key agreement with collective detection. Sci. Rep. 7(1), 15264 (2017)ADSCrossRef
13.
Zurück zum Zitat Liu, W.J., Xu, Y., Yang, C.N., Gao, P.P., Yu, W.B.: An Efficient and Secure Arbitrary N-Party Quantum Key Agreement Protocol Using Bell States. Int. J. Theor. Phys. 57(1), 195–207 (2018)MathSciNetCrossRef Liu, W.J., Xu, Y., Yang, C.N., Gao, P.P., Yu, W.B.: An Efficient and Secure Arbitrary N-Party Quantum Key Agreement Protocol Using Bell States. Int. J. Theor. Phys. 57(1), 195–207 (2018)MathSciNetCrossRef
14.
Zurück zum Zitat Lin, S., Guo, G.D., Chen, A.M., Liu, X.F.: Cryptanalysis of multi-party quantum key agreement with five-qubit Brown states. Quantum Inf. Process. 18(12), 358 (2019)ADSMathSciNetCrossRef Lin, S., Guo, G.D., Chen, A.M., Liu, X.F.: Cryptanalysis of multi-party quantum key agreement with five-qubit Brown states. Quantum Inf. Process. 18(12), 358 (2019)ADSMathSciNetCrossRef
15.
Zurück zum Zitat Zhang, L., Sun, H.W., Zhang, K.J., Jia, H.Y.: An improved arbitrated quantum signature protocol based on the key-controlled chained CNOT encryption. Quantum Inf. Process. 16(3), UNSP70 (2017)ADSMathSciNetCrossRef Zhang, L., Sun, H.W., Zhang, K.J., Jia, H.Y.: An improved arbitrated quantum signature protocol based on the key-controlled chained CNOT encryption. Quantum Inf. Process. 16(3), UNSP70 (2017)ADSMathSciNetCrossRef
16.
Zurück zum Zitat Li, W., Shi, R.H., Huang, D.Z., Shi, J.J., Guo, Y.: Quantum blind dual-signature scheme without arbitrator. Phys. Scr. 91(3), (2016) Li, W., Shi, R.H., Huang, D.Z., Shi, J.J., Guo, Y.: Quantum blind dual-signature scheme without arbitrator. Phys. Scr. 91(3), (2016)
17.
Zurück zum Zitat Liu, W.J., Wang, F., Ji, S., Qu, Z.G., Wang, X.J.: Attacks and improvement of quantum sealed-bid auction with EPR pairs. Commun. Theor. Phys. 61(6), 686–690 (2014)ADSCrossRef Liu, W.J., Wang, F., Ji, S., Qu, Z.G., Wang, X.J.: Attacks and improvement of quantum sealed-bid auction with EPR pairs. Commun. Theor. Phys. 61(6), 686–690 (2014)ADSCrossRef
18.
Zurück zum Zitat Zhang, K.J., Kwek, L., Ma, C., Zhang, L., Sun, H.W.: Security analysis with improved design of post-confirmation mechanism for quantum sealed-bid auction with single photons. Quantum Inf. Process. 17(2), 38 (2018)ADSMathSciNetCrossRef Zhang, K.J., Kwek, L., Ma, C., Zhang, L., Sun, H.W.: Security analysis with improved design of post-confirmation mechanism for quantum sealed-bid auction with single photons. Quantum Inf. Process. 17(2), 38 (2018)ADSMathSciNetCrossRef
19.
Zurück zum Zitat Sheng, Y.B., Zhou, L.: Distributed secure quantum machine learning. Sci. Bull. 62(14), 1025–1029 (2017)CrossRef Sheng, Y.B., Zhou, L.: Distributed secure quantum machine learning. Sci. Bull. 62(14), 1025–1029 (2017)CrossRef
20.
Zurück zum Zitat Liu, W.J., Gao, P.P., Yu, W.B., Qu, Z.G., Yang, C.N.: Quantum relief algorithm. Quantum Info. Process. 17(10), 280 (2018)ADSMathSciNetCrossRef Liu, W.J., Gao, P.P., Yu, W.B., Qu, Z.G., Yang, C.N.: Quantum relief algorithm. Quantum Info. Process. 17(10), 280 (2018)ADSMathSciNetCrossRef
21.
Zurück zum Zitat Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature. 549(7671), 195–202 (2017)ADSCrossRef Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature. 549(7671), 195–202 (2017)ADSCrossRef
22.
Zurück zum Zitat Liu, W., Gao, P., Wang, Y., Yu, W., Zhang, M.: A unitary weights based one-iteration quantum perceptron algorithm for non-ideal training sets. IEEE Access. 7, 36854–36865 (2019)CrossRef Liu, W., Gao, P., Wang, Y., Yu, W., Zhang, M.: A unitary weights based one-iteration quantum perceptron algorithm for non-ideal training sets. IEEE Access. 7, 36854–36865 (2019)CrossRef
23.
Zurück zum Zitat Mattle, K., Weinfurter, H., Kwiat, P., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76(25), 4656–4659 (1996)ADSCrossRef Mattle, K., Weinfurter, H., Kwiat, P., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76(25), 4656–4659 (1996)ADSCrossRef
24.
Zurück zum Zitat Li, C.Y., Li, X.H., Deng, F.G., Zhou, P., Zhou, H.Y.: Complete multiple round quantum dense coding with quantum logical network. Chin. Sci. Bull. 52(9), 1162–1165 (2007)CrossRef Li, C.Y., Li, X.H., Deng, F.G., Zhou, P., Zhou, H.Y.: Complete multiple round quantum dense coding with quantum logical network. Chin. Sci. Bull. 52(9), 1162–1165 (2007)CrossRef
25.
Zurück zum Zitat Tian, M.B., Zhang, G.F.: Improving the capacity of quantum dense coding by weak measurement and reversal measurement. Quantum Inf. Process. 17(2), 19 (2018)ADSMathSciNetCrossRef Tian, M.B., Zhang, G.F.: Improving the capacity of quantum dense coding by weak measurement and reversal measurement. Quantum Inf. Process. 17(2), 19 (2018)ADSMathSciNetCrossRef
26.
Zurück zum Zitat Hsieh, M.H., Wilde, M.M.: Trading classical communication, quantum communication, and entanglement in quantum shannon theory. IEEE Trans. Inf. Theory. 56(9), 4705–4730 (2010)MathSciNetCrossRef Hsieh, M.H., Wilde, M.M.: Trading classical communication, quantum communication, and entanglement in quantum shannon theory. IEEE Trans. Inf. Theory. 56(9), 4705–4730 (2010)MathSciNetCrossRef
27.
Zurück zum Zitat Khalighi, M.A., Uysal, M.: Survey on free space optical communication: a communication theory perspective. IEEE Commun. Surv. Tutor. 16(4), 2231–2258 (2014)CrossRef Khalighi, M.A., Uysal, M.: Survey on free space optical communication: a communication theory perspective. IEEE Commun. Surv. Tutor. 16(4), 2231–2258 (2014)CrossRef
28.
Zurück zum Zitat Shukla, C., Kothari, V., Banerjee, A., Pathak, A.: On the group-theoretic structure of a class of quantum dialogue;protocols. Phys. Lett. A. 377(7), 518–527 (2013)ADSMathSciNetCrossRef Shukla, C., Kothari, V., Banerjee, A., Pathak, A.: On the group-theoretic structure of a class of quantum dialogue;protocols. Phys. Lett. A. 377(7), 518–527 (2013)ADSMathSciNetCrossRef
29.
Zurück zum Zitat Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000) Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
30.
Zurück zum Zitat Bouwmeester, D., Pan, J.-W., Daniell, M., Weinfurter, H., Zeilinger, A.: Observation of three-photon Greenberger-Horne-Zeilinger entanglement. Phys. Rev. Lett. 82, 1345–1349 (1999)ADSMathSciNetCrossRef Bouwmeester, D., Pan, J.-W., Daniell, M., Weinfurter, H., Zeilinger, A.: Observation of three-photon Greenberger-Horne-Zeilinger entanglement. Phys. Rev. Lett. 82, 1345–1349 (1999)ADSMathSciNetCrossRef
31.
Zurück zum Zitat Dur, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A. 62(6), 062314 (2000)ADSMathSciNetCrossRef Dur, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A. 62(6), 062314 (2000)ADSMathSciNetCrossRef
32.
Zurück zum Zitat Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86(5), 910–913 (2001)ADSCrossRef Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86(5), 910–913 (2001)ADSCrossRef
33.
Zurück zum Zitat Cui, H.T., Tian, J.L., Wang, C.M., Chen, Y.C.: A classification of entanglement in multipartite states with translation symmetry. Eur. Phys. J. D. 67(7), 348–354 (2012) Cui, H.T., Tian, J.L., Wang, C.M., Chen, Y.C.: A classification of entanglement in multipartite states with translation symmetry. Eur. Phys. J. D. 67(7), 348–354 (2012)
Metadaten
Titel
A unitary operator construction solution based on Pauli group for maximal dense coding with a class of symmetric states
verfasst von
Wenjie Liu
Junxiu Chen
Wenbin Yu
Zhihao Liu
Hanwu Chen
Publikationsdatum
01.08.2020
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 8/2020
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-020-02728-z

Weitere Artikel der Ausgabe 8/2020

Quantum Information Processing 8/2020 Zur Ausgabe

Neuer Inhalt