Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.07.2022

A Variant of Long Multiplication Design with Low Power and Area Using Modified 7:3 Compressor for Biomedical Applications

verfasst von: K. Gavaskar, D. Malathi, G. Ravivarma, V. Krithika Devi, M. Megala, S. Megaraj Begam

Erschienen in: Wireless Personal Communications

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

A compressor is an applicable part that is broadly operated in VLSI circuits and its systems that take part in an important role in high-speed systems. This article computes that the new 7:3 compressor uses a 7-bit stacking approach using NOR gates that reduces power and delay as well as transistor count when compared to the existing one. In the existing part, the 7:3 compressor was designed in three methods, which are the mirror circuit using XOR, the 4 T using XOR, and the transmission gate using XOR. Among these, the transmission gate using XOR gives the best result. In the recommended work, the stacking approach is used to execute the 7:3 compressor. In the first stage, a two 3-bit stacker approach was used. From the first stage, output is taken for computing output equations S0, C1, and C2. Using the NOR gate in the proposed equations gives a better result. The proposed 7:3 compressor is implemented in an 8*8 Wallace tree multiplier, which implies it will reduce the intermediate parts and consume less power. At 250 nm technology, the proposed design is designed and analysed in a Tanner EDA tool. While analysing its parameters, the percentage reduction in power, delay, and PDP between the existing and proposed 7:3 compressor was 12.82%, 2.87%, and 15.35%, respectively, and the percentage reduction in power, delay, and PDP between the existing and proposed Wallace tree multiplier was 4.2%, 3.01%, and 7.11%., the proposed design gives the greatest performance in the specifications, namely power, delay, and PDP, along with the number of transistor utilization.
Literatur
1.
Zurück zum Zitat Taheri, M., Arasteh, A., Mohammadyan, S., Panahi, A., & Navi, K. (2020). A novel majority based imprecise 4: 2 compressor with respect to the current and future VLSI industry. Microprocessors and Microsystems, 73, 102962. CrossRef Taheri, M., Arasteh, A., Mohammadyan, S., Panahi, A., & Navi, K. (2020). A novel majority based imprecise 4: 2 compressor with respect to the current and future VLSI industry. Microprocessors and Microsystems, 73, 102962. CrossRef
2.
Zurück zum Zitat Riaz, A., & Sharma, V. K. (2022). A novel low power 4: 2 compressor using FinFET devices. In Analog integrated circuits and signal processing, 1–13. Riaz, A., & Sharma, V. K. (2022). A novel low power 4: 2 compressor using FinFET devices. In Analog integrated circuits and signal processing, 1–13.
3.
Zurück zum Zitat Wasaki, K. (2020). Stability of the 7–3 compressor circuit for Wallace Tree. Part I. Formalized Mathematics, 65–77. Wasaki, K. (2020). Stability of the 7–3 compressor circuit for Wallace Tree. Part I. Formalized Mathematics, 65–77.
4.
Zurück zum Zitat Potluri, U. S., Madanayake, A., Cintra, R. J., Bayer, F. M., Kulasekera, S., & Edirisuriya, A. (2014). Improved 8-point approximate DCT for image and video compression requiring only 14 additions. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(6), 1727–1740. CrossRef Potluri, U. S., Madanayake, A., Cintra, R. J., Bayer, F. M., Kulasekera, S., & Edirisuriya, A. (2014). Improved 8-point approximate DCT for image and video compression requiring only 14 additions. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(6), 1727–1740. CrossRef
5.
Zurück zum Zitat Gavaskar, K., Malathi, D., Ravivarma, G., Devi, V. K., Megala, M., & Begam, S. M. (2021). A fresh design of power effective adapted vedic multiplier for modern digital signal processors. Wireless Personal Communications, 1–19. Gavaskar, K., Malathi, D., Ravivarma, G., Devi, V. K., Megala, M., & Begam, S. M. (2021). A fresh design of power effective adapted vedic multiplier for modern digital signal processors. Wireless Personal Communications, 1–19.
6.
Zurück zum Zitat Strollo, A. G. M., Napoli, E., De Caro, D., Petra, N., & Di Meo, G. (2020). Comparison and extension of approximate 4–2 compressors for low power approximate multipliers. IEEE Transactions on Circuits and Systems I: Regular Papers, 67(9), 3021–3034. MathSciNetCrossRef Strollo, A. G. M., Napoli, E., De Caro, D., Petra, N., & Di Meo, G. (2020). Comparison and extension of approximate 4–2 compressors for low power approximate multipliers. IEEE Transactions on Circuits and Systems I: Regular Papers, 67(9), 3021–3034. MathSciNetCrossRef
7.
Zurück zum Zitat Balobas, D., & Konofaos, N. (2018). Low-power high-performance CMOS 5–2 compressor with 58 transistors. Electronics Letters, 54(5), 278–280. CrossRef Balobas, D., & Konofaos, N. (2018). Low-power high-performance CMOS 5–2 compressor with 58 transistors. Electronics Letters, 54(5), 278–280. CrossRef
8.
Zurück zum Zitat Arasteh, A., Moaiyeri, M. H., Taheri, M., Navi, K., & Bagherzadeh, N. (2018). An energy and area efficient 4: 2 compressor based on FinFETs. Integration, 60, 224–231. CrossRef Arasteh, A., Moaiyeri, M. H., Taheri, M., Navi, K., & Bagherzadeh, N. (2018). An energy and area efficient 4: 2 compressor based on FinFETs. Integration, 60, 224–231. CrossRef
9.
Zurück zum Zitat Edavoor, P. J., Raveendran, S., & Rahulkar, A. D. (2020). Approximate multiplier design using novel dual-stage 4: 2 compressors. IEEE Access, 8, 48337–48351. CrossRef Edavoor, P. J., Raveendran, S., & Rahulkar, A. D. (2020). Approximate multiplier design using novel dual-stage 4: 2 compressors. IEEE Access, 8, 48337–48351. CrossRef
10.
Zurück zum Zitat Sekar, E., Palaniswami, S., Philip, S. P., Gavaskar, K., & Danielraj, A. (2021). Design of reconfigurable signed dual modulo multiplier function (DMMF) for RNS. In 2021 smart technologies, communication and robotics (STCR) (pp. 1–5). IEEE. Sekar, E., Palaniswami, S., Philip, S. P., Gavaskar, K., & Danielraj, A. (2021). Design of reconfigurable signed dual modulo multiplier function (DMMF) for RNS. In 2021 smart technologies, communication and robotics (STCR) (pp. 1–5). IEEE.
11.
Zurück zum Zitat Gavaskar, K., Dhivya, R., & Dimple Dayana, R. (2022). Low power CMOS design of phase locked loop for fastest frequency acquisition at various nanometer technologies. Wireless Personal Communications, 1–13. Gavaskar, K., Dhivya, R., & Dimple Dayana, R. (2022). Low power CMOS design of phase locked loop for fastest frequency acquisition at various nanometer technologies. Wireless Personal Communications, 1–13.
12.
Zurück zum Zitat Priyadharshni, M., Chathalingathu, A., Kumaravel, S., Manoharan, A., Veeramachaneni, S., & Mahammad, S. N. (2020). Logically optimal novel 4: 2 compressor architectures for high-performance applications. Arabian Journal for Science and Engineering, 45(8), 6199–6209. CrossRef Priyadharshni, M., Chathalingathu, A., Kumaravel, S., Manoharan, A., Veeramachaneni, S., & Mahammad, S. N. (2020). Logically optimal novel 4: 2 compressor architectures for high-performance applications. Arabian Journal for Science and Engineering, 45(8), 6199–6209. CrossRef
13.
Zurück zum Zitat Arulmurugan, A., Murugesan, G., & Vivek, B. (2020). Thermal-aware test data compression for system-on-chip based on modified bitmask based methods. Journal of Electronic Testing, 36(5), 577–590. CrossRef Arulmurugan, A., Murugesan, G., & Vivek, B. (2020). Thermal-aware test data compression for system-on-chip based on modified bitmask based methods. Journal of Electronic Testing, 36(5), 577–590. CrossRef
14.
Zurück zum Zitat Guo, W., & Li, S. (2021). Fast binary counters and compressors generated by sorting network. IEEE Transactions on Very Large Scale Integration VLSI Systems, 29(6), 1220–1230. CrossRef Guo, W., & Li, S. (2021). Fast binary counters and compressors generated by sorting network. IEEE Transactions on Very Large Scale Integration VLSI Systems, 29(6), 1220–1230. CrossRef
15.
Zurück zum Zitat Devi, T. K., Priyanka, E. B., Sakthivel, P., & Sagayaraj, A. S. (2022). Low complexity modified viterbi decoder with convolution codes for power efficient wireless communication. Wireless Personal Communications, 122(1), 685–700. CrossRef Devi, T. K., Priyanka, E. B., Sakthivel, P., & Sagayaraj, A. S. (2022). Low complexity modified viterbi decoder with convolution codes for power efficient wireless communication. Wireless Personal Communications, 122(1), 685–700. CrossRef
16.
Zurück zum Zitat Ansari, S. J., Verma, P., & Choudhary, S. D. (2022). Implementation of novel high performance FIR filter design using wallace tree multiplier with 7–3 and 8–3 compressor. In Innovations in electronics and communication engineering (pp. 337–348). Springer, Singapore. Ansari, S. J., Verma, P., & Choudhary, S. D. (2022). Implementation of novel high performance FIR filter design using wallace tree multiplier with 7–3 and 8–3 compressor. In Innovations in electronics and communication engineering (pp. 337–348). Springer, Singapore.
17.
Zurück zum Zitat Khaleqi Qaleh Jooq, M., Ahmadinejad, M., & Moaiyeri, M. H. (2021). Ultraefficient imprecise multipliers based on innovative 4: 2 approximate compressors. International Journal of Circuit Theory and Applications, 49(1), 169–184. CrossRef Khaleqi Qaleh Jooq, M., Ahmadinejad, M., & Moaiyeri, M. H. (2021). Ultraefficient imprecise multipliers based on innovative 4: 2 approximate compressors. International Journal of Circuit Theory and Applications, 49(1), 169–184. CrossRef
18.
Zurück zum Zitat Saha, A., Singh, R. K., & Pal, D. (2022). Pair-wise Urdhava-Tiryagbhyam (UT) vedic ternary multiplier. Microelectronics Journal, 119, 105318. CrossRef Saha, A., Singh, R. K., & Pal, D. (2022). Pair-wise Urdhava-Tiryagbhyam (UT) vedic ternary multiplier. Microelectronics Journal, 119, 105318. CrossRef
19.
Zurück zum Zitat Zhang, D., & Elmasry, M. I. (2021, September). High performance compressor building blocks for digital neural network implementation. In World congress on neural networks-San Diego (pp. II–607). Routledge. Zhang, D., & Elmasry, M. I. (2021, September). High performance compressor building blocks for digital neural network implementation. In World congress on neural networks-San Diego (pp. II–607). Routledge.
20.
Zurück zum Zitat Solanki, V., Darji, A. D., & Singapuri, H. (2021). Design of low-power wallace tree multiplier architecture using modular approach. Circuits, Systems, and Signal Processing, 40(9), 4407–4427. CrossRef Solanki, V., Darji, A. D., & Singapuri, H. (2021). Design of low-power wallace tree multiplier architecture using modular approach. Circuits, Systems, and Signal Processing, 40(9), 4407–4427. CrossRef
21.
Zurück zum Zitat Abed, S. E., Mohd, B. J., Al-bayati, Z., & Alouneh, S. (2012). Low power Wallace multiplier design based on wide counters. International Journal of Circuit Theory and Applications, 40(11), 1175–1185. CrossRef Abed, S. E., Mohd, B. J., Al-bayati, Z., & Alouneh, S. (2012). Low power Wallace multiplier design based on wide counters. International Journal of Circuit Theory and Applications, 40(11), 1175–1185. CrossRef
22.
Zurück zum Zitat Daliri, M. S., Navi, K., Mirzaee, R. F., Daliri, S. S., & Bagherzadeh, N. (2017). A new approach for designing compressors with a new hardware-friendly mathematical method for multi-input XOR gates. IET Circuits, Devices & Systems, 11(1), 46–57. CrossRef Daliri, M. S., Navi, K., Mirzaee, R. F., Daliri, S. S., & Bagherzadeh, N. (2017). A new approach for designing compressors with a new hardware-friendly mathematical method for multi-input XOR gates. IET Circuits, Devices & Systems, 11(1), 46–57. CrossRef
23.
Zurück zum Zitat Devi, T. K., Priyanka, E. B., & Sakthivel, P. (2021). FPGA implementation of balanced biorthogonal multiwavelet using direct pipelined mapping method for image compression applications. Sensing and Imaging, 22(1), 1–19. CrossRef Devi, T. K., Priyanka, E. B., & Sakthivel, P. (2021). FPGA implementation of balanced biorthogonal multiwavelet using direct pipelined mapping method for image compression applications. Sensing and Imaging, 22(1), 1–19. CrossRef
24.
Zurück zum Zitat Tavakkoli, E., & Aminian, M. (2021). Design and analysis of energy‐efficient compressors based on low‐power XOR gates in carbon nanotube technology. IET Circuits, Devices & Systems. Tavakkoli, E., & Aminian, M. (2021). Design and analysis of energy‐efficient compressors based on low‐power XOR gates in carbon nanotube technology. IET Circuits, Devices & Systems.
25.
Zurück zum Zitat Gavaskar, K., Narayanan, M. S., Nachammal, M. S., & Vignesh, K. (2021). Design and comparative analysis of SRAM array using low leakage controlled transistor technique with improved delay. Journal of Ambient Intelligence and Humanized Computing, 1–10. Gavaskar, K., Narayanan, M. S., Nachammal, M. S., & Vignesh, K. (2021). Design and comparative analysis of SRAM array using low leakage controlled transistor technique with improved delay. Journal of Ambient Intelligence and Humanized Computing, 1–10.
26.
Zurück zum Zitat Ganavi, M. G., & Premananda, B. S. (2020). Design of low power reduced complexity wallace tree multiplier using positive feedback adiabatic logic. In Advanced Computing and intelligent engineering (pp. 139–150). Singapore: Springer. Ganavi, M. G., & Premananda, B. S. (2020). Design of low power reduced complexity wallace tree multiplier using positive feedback adiabatic logic. In Advanced Computing and intelligent engineering (pp. 139–150). Singapore: Springer.
27.
Zurück zum Zitat Malathi, L., Bharathi, A., & Jayanthi, A. N. (2021). RDO-WT: optimised Wallace Tree multiplier based FIR filter for signal processing applications. International Journal of Electronics, 1–22. Malathi, L., Bharathi, A., & Jayanthi, A. N. (2021). RDO-WT: optimised Wallace Tree multiplier based FIR filter for signal processing applications. International Journal of Electronics, 1–22.
Metadaten
Titel
A Variant of Long Multiplication Design with Low Power and Area Using Modified 7:3 Compressor for Biomedical Applications
verfasst von
K. Gavaskar
D. Malathi
G. Ravivarma
V. Krithika Devi
M. Megala
S. Megaraj Begam
Publikationsdatum
01.07.2022
Verlag
Springer US
Erschienen in
Wireless Personal Communications
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09918-1