Skip to main content
Erschienen in: Continuum Mechanics and Thermodynamics 4/2020

11.07.2019 | Original Article

A variational framework for the modeling of glassy polymers under finite strains

verfasst von: Jan-Michel C. Farias, Laurent Stainier, Eduardo Alberto Fancello

Erschienen in: Continuum Mechanics and Thermodynamics | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a viscoelastic model able to capture important mechanical features of a wide class of glassy polymers is presented. Among them, the ability of reproducing the highly nonlinear rate-dependent stress response and the post-yield strain softening phenomenon. The simplicity of the proposition allows to recover the same mathematical structure of classical constitutive approaches, well suited for the use of implicit finite element codes. To this aim, the flow resistance concept, elsewhere known as shear strength, is reframed as a state variable of an accumulated strain measure. Three alternative expressions for this function are presented. The model is cast within a variational framework in which consistent constitutive updates are obtained by a minimization procedure. Convenient choices for the conservative and dissipative potentials reduce the local constitutive problem to the solution of a single nonlinear scalar equation, emulating the simplest case of viscoelastic models. Numerical tests on the constitutive model show excellent agreement with experimental data. Finally, a 3D simulation of a standard specimen with heterogeneous material properties illustrates the ability of the present proposition to be implemented in implicit finite element codes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kurtz, S.M., Devine, J.N.: PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28, 4845–4869 (2007)CrossRef Kurtz, S.M., Devine, J.N.: PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28, 4845–4869 (2007)CrossRef
2.
Zurück zum Zitat Smith, K.E., Temenoff, J.S., Gall, K.: On the toughness of photopolymerizable (meth)acrylate networks for biomedical applications. J. Appl. Polym. Sci. 114, 2711–2722 (2009)CrossRef Smith, K.E., Temenoff, J.S., Gall, K.: On the toughness of photopolymerizable (meth)acrylate networks for biomedical applications. J. Appl. Polym. Sci. 114, 2711–2722 (2009)CrossRef
3.
Zurück zum Zitat Ulery, B.D., Nair, L.S., Laurencin, C.T.: Biomedical applications of biodegradable polymers. J. Polym. Sci. B 49, 832–864 (2011)CrossRef Ulery, B.D., Nair, L.S., Laurencin, C.T.: Biomedical applications of biodegradable polymers. J. Polym. Sci. B 49, 832–864 (2011)CrossRef
4.
Zurück zum Zitat Miller, A.T., Safranski, D.L., Smith, K.E., Guldberg, R.E., Gall, K.: Compressive cyclic ratcheting and fatigue of synthetic, soft biomedical polymers in solution. J. Mech. Behav. Biomed. Mater. 54, 268–282 (2016)CrossRef Miller, A.T., Safranski, D.L., Smith, K.E., Guldberg, R.E., Gall, K.: Compressive cyclic ratcheting and fatigue of synthetic, soft biomedical polymers in solution. J. Mech. Behav. Biomed. Mater. 54, 268–282 (2016)CrossRef
5.
Zurück zum Zitat Spitzig, W.A., Richmond, O.: Effect of hydrostatic pressure on the deformation behavior of polyethylene and polycarbonate in tension and in compression. Polym. Eng. Sci. 19, 1129–1139 (1979)CrossRef Spitzig, W.A., Richmond, O.: Effect of hydrostatic pressure on the deformation behavior of polyethylene and polycarbonate in tension and in compression. Polym. Eng. Sci. 19, 1129–1139 (1979)CrossRef
6.
Zurück zum Zitat G’Sell, C., Hiver, J.M., Dahoun, A., Souahi, A.: Video-controlled tensile testing of polymers and metals beyond the necking point. J. Mater. Sci. 27, 5031–5039 (1992)ADSCrossRef G’Sell, C., Hiver, J.M., Dahoun, A., Souahi, A.: Video-controlled tensile testing of polymers and metals beyond the necking point. J. Mater. Sci. 27, 5031–5039 (1992)ADSCrossRef
7.
Zurück zum Zitat Arruda, E.M., Boyce, M.C., Jayachandran, R.: Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers. Mech. Mater. 19, 193–212 (1995)CrossRef Arruda, E.M., Boyce, M.C., Jayachandran, R.: Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers. Mech. Mater. 19, 193–212 (1995)CrossRef
8.
Zurück zum Zitat Khan, A., Zhang, H.: Finite deformation of a polymer: experiments and modeling. Int. J. Plast. 17, 1167–1188 (2001)MATHCrossRef Khan, A., Zhang, H.: Finite deformation of a polymer: experiments and modeling. Int. J. Plast. 17, 1167–1188 (2001)MATHCrossRef
9.
Zurück zum Zitat Nakafuku, C., Takehisa, S.Y.: Glass transition and mechanical properties of PLLA and PDLLA-PGA copolymer blends. J. Appl. Polym. Sci. 93, 2164–2173 (2004)CrossRef Nakafuku, C., Takehisa, S.Y.: Glass transition and mechanical properties of PLLA and PDLLA-PGA copolymer blends. J. Appl. Polym. Sci. 93, 2164–2173 (2004)CrossRef
10.
Zurück zum Zitat Khan, A.S., Lopez-Pamies, O., Kazmi, R.: Thermo-mechanical large deformation response and constitutive modeling of viscoelastic polymers over a wide range of strain rates and temperatures. Int. J. Plast. 22, 581–601 (2006)MATHCrossRef Khan, A.S., Lopez-Pamies, O., Kazmi, R.: Thermo-mechanical large deformation response and constitutive modeling of viscoelastic polymers over a wide range of strain rates and temperatures. Int. J. Plast. 22, 581–601 (2006)MATHCrossRef
11.
Zurück zum Zitat Richeton, J., Ahzi, S., Vecchio, K.S., Jiang, F.C., Adharapurapu, R.R.: Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: characterization and modeling of the compressive yield stress. Int. J. Solids Struct. 43, 2318–2335 (2006)CrossRef Richeton, J., Ahzi, S., Vecchio, K.S., Jiang, F.C., Adharapurapu, R.R.: Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: characterization and modeling of the compressive yield stress. Int. J. Solids Struct. 43, 2318–2335 (2006)CrossRef
12.
Zurück zum Zitat Dreistadt, C., Bonnet, A.S., Chevrier, P., Lipinski, P.: Experimental study of the polycarbonate behaviour during complex loadings and comparison with the Boyce, Parks and Argon model predictions. Mater. Des. 30, 3126–3140 (2009)CrossRef Dreistadt, C., Bonnet, A.S., Chevrier, P., Lipinski, P.: Experimental study of the polycarbonate behaviour during complex loadings and comparison with the Boyce, Parks and Argon model predictions. Mater. Des. 30, 3126–3140 (2009)CrossRef
13.
Zurück zum Zitat Ames, N.M., Srivastava, V., Chester, S.A., Anand, L.: A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part II: applications. Int. J. Plast. 25, 1495–1539 (2009)MATHCrossRef Ames, N.M., Srivastava, V., Chester, S.A., Anand, L.: A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part II: applications. Int. J. Plast. 25, 1495–1539 (2009)MATHCrossRef
14.
Zurück zum Zitat Wright, D.D., Lautenschlager, E.P., Gilbert, J.L.: The effect of processing conditions on the properties of poly(methyl methacrylate) fibers. J. Biomed. Mater. Res. 63, 152–160 (2002)CrossRef Wright, D.D., Lautenschlager, E.P., Gilbert, J.L.: The effect of processing conditions on the properties of poly(methyl methacrylate) fibers. J. Biomed. Mater. Res. 63, 152–160 (2002)CrossRef
15.
Zurück zum Zitat Viana, J.C., Alves, N.M., Mano, J.F.: Morphology and mechanical properties of injection molded poly(ethylene terephthalate). Polym. Eng. Sci. 44, 2174–2184 (2004)CrossRef Viana, J.C., Alves, N.M., Mano, J.F.: Morphology and mechanical properties of injection molded poly(ethylene terephthalate). Polym. Eng. Sci. 44, 2174–2184 (2004)CrossRef
16.
Zurück zum Zitat Holopainen, S.: Modeling of the mechanical behavior of amorphous glassy polymers under variable loadings and comparison with state-of-the-art model predictions. Mech. Mater. 66, 35–58 (2013)CrossRef Holopainen, S.: Modeling of the mechanical behavior of amorphous glassy polymers under variable loadings and comparison with state-of-the-art model predictions. Mech. Mater. 66, 35–58 (2013)CrossRef
17.
Zurück zum Zitat Gudimetla, M.R., Doghri, I.: A finite strain thermodynamically-based constitutive framework coupling viscoelasticity and viscoplasticity with application to glassy polymers. Int. J. Plast. 98, 197–216 (2017)CrossRef Gudimetla, M.R., Doghri, I.: A finite strain thermodynamically-based constitutive framework coupling viscoelasticity and viscoplasticity with application to glassy polymers. Int. J. Plast. 98, 197–216 (2017)CrossRef
18.
Zurück zum Zitat Haward, R.N., Thackray, G.: The use of a mathematical model to describe isothermal stress–strain curves in glassy thermoplastics. Proc. R. Soc. Lond. A 302, 453–472 (1968)ADSCrossRef Haward, R.N., Thackray, G.: The use of a mathematical model to describe isothermal stress–strain curves in glassy thermoplastics. Proc. R. Soc. Lond. A 302, 453–472 (1968)ADSCrossRef
19.
Zurück zum Zitat Bagepalli, B.S.: Finite strain elastic-plastic deformation of glassy polymers. Ph.D. thesis, Massachusetts Institute of Technology (1984) Bagepalli, B.S.: Finite strain elastic-plastic deformation of glassy polymers. Ph.D. thesis, Massachusetts Institute of Technology (1984)
20.
Zurück zum Zitat Boyce, M.C., Parks, D.M., Argon, A.S.: Large inelastic deformation of glassy polymers. Part I: rate dependent constitutive model. Mech. Mater. 7, 15–33 (1988)CrossRef Boyce, M.C., Parks, D.M., Argon, A.S.: Large inelastic deformation of glassy polymers. Part I: rate dependent constitutive model. Mech. Mater. 7, 15–33 (1988)CrossRef
21.
Zurück zum Zitat Anand, L., Gurtin, M.E.: A theory of amorphous solids undergoing large deformations, with application to polymeric glasses. Int. J. Solids Struct. 40, 1465–1487 (2003)MATHCrossRef Anand, L., Gurtin, M.E.: A theory of amorphous solids undergoing large deformations, with application to polymeric glasses. Int. J. Solids Struct. 40, 1465–1487 (2003)MATHCrossRef
22.
Zurück zum Zitat Poulain, X., Benzerga, A.A., Goldberg, R.K.: Finite-strain elasto-viscoplastic behavior of an epoxy resin: experiments and modeling in the glassy regime. Int. J. Plast. 62, 138–161 (2014)CrossRef Poulain, X., Benzerga, A.A., Goldberg, R.K.: Finite-strain elasto-viscoplastic behavior of an epoxy resin: experiments and modeling in the glassy regime. Int. J. Plast. 62, 138–161 (2014)CrossRef
23.
Zurück zum Zitat Srivastava, V., Chester, S.A., Ames, N.M., Anand, L.: A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition. Int. J. Plast. 26, 1138–1182 (2010)MATHCrossRef Srivastava, V., Chester, S.A., Ames, N.M., Anand, L.: A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition. Int. J. Plast. 26, 1138–1182 (2010)MATHCrossRef
24.
Zurück zum Zitat Ortiz, M., Stainier, L.: The variational formulation of viscoplastic constitutive updates. Comput. Methods Appl. Mech. Eng. 171, 419–44 (1999)ADSMathSciNetMATHCrossRef Ortiz, M., Stainier, L.: The variational formulation of viscoplastic constitutive updates. Comput. Methods Appl. Mech. Eng. 171, 419–44 (1999)ADSMathSciNetMATHCrossRef
25.
Zurück zum Zitat Radovitzky, R., Ortiz, M.: Error estimation and adaptive meshing in strongly nonlinear dynamic problems. Comput. Methods Appl. Mech. Eng. 172, 203–240 (1999)ADSMathSciNetMATHCrossRef Radovitzky, R., Ortiz, M.: Error estimation and adaptive meshing in strongly nonlinear dynamic problems. Comput. Methods Appl. Mech. Eng. 172, 203–240 (1999)ADSMathSciNetMATHCrossRef
26.
Zurück zum Zitat Yang, Q., Stainier, L., Ortiz, M.: A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids. J. Mech. Phys. Solids 54, 401–424 (2006)ADSMathSciNetMATHCrossRef Yang, Q., Stainier, L., Ortiz, M.: A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids. J. Mech. Phys. Solids 54, 401–424 (2006)ADSMathSciNetMATHCrossRef
27.
Zurück zum Zitat Fancello, E.A., Ponthot, J.-P., Stainier, L.: A variational formulation of constitutive models and updates in non-linear finite viscoelasticity. Int. J. Numer. Methods Eng. 65, 1831–1864 (2006)MATHCrossRef Fancello, E.A., Ponthot, J.-P., Stainier, L.: A variational formulation of constitutive models and updates in non-linear finite viscoelasticity. Int. J. Numer. Methods Eng. 65, 1831–1864 (2006)MATHCrossRef
28.
Zurück zum Zitat Mosler, J., Bruhns, O.T.: Towards variational constitutive updates for non-associative plasticity models at finite strain: models based on a volumetric-deviatoric split. Int. J. Solids Struct. 46, 1676–1684 (2009)MathSciNetMATHCrossRef Mosler, J., Bruhns, O.T.: Towards variational constitutive updates for non-associative plasticity models at finite strain: models based on a volumetric-deviatoric split. Int. J. Solids Struct. 46, 1676–1684 (2009)MathSciNetMATHCrossRef
29.
Zurück zum Zitat Mosler, J.: Variationally consistent modeling of finite strain plasticity theory with non-linear kinematic hardening. Comput. Methods Appl. Mech. Eng. 199, 2753–2764 (2010)ADSMathSciNetMATHCrossRef Mosler, J.: Variationally consistent modeling of finite strain plasticity theory with non-linear kinematic hardening. Comput. Methods Appl. Mech. Eng. 199, 2753–2764 (2010)ADSMathSciNetMATHCrossRef
30.
Zurück zum Zitat Kintzel, O., Mosler, J.: An incremental minimization principle suitable for the analysis of low cycle fatigue in metals: a coupled ductile-brittle damage model. Comput. Methods Appl. Mech. Eng. 200(45–46), 3127–3138 (2011)ADSMathSciNetMATHCrossRef Kintzel, O., Mosler, J.: An incremental minimization principle suitable for the analysis of low cycle fatigue in metals: a coupled ductile-brittle damage model. Comput. Methods Appl. Mech. Eng. 200(45–46), 3127–3138 (2011)ADSMathSciNetMATHCrossRef
31.
Zurück zum Zitat El Sayed, T., Mota, A., Fraternali, F., Ortiz, M.: A variational constitutive model for soft biological tissues. J. Biomech. 41(7), 1458–66 (2008)CrossRef El Sayed, T., Mota, A., Fraternali, F., Ortiz, M.: A variational constitutive model for soft biological tissues. J. Biomech. 41(7), 1458–66 (2008)CrossRef
32.
Zurück zum Zitat Vassoler, J.M., Reips, L., Fancello, E.A.: A variational framework for fiber-reinforced viscoelastic soft tissues. Int. J. Numer. Methods Eng. 89, 1691–1706 (2012)MathSciNetMATHCrossRef Vassoler, J.M., Reips, L., Fancello, E.A.: A variational framework for fiber-reinforced viscoelastic soft tissues. Int. J. Numer. Methods Eng. 89, 1691–1706 (2012)MathSciNetMATHCrossRef
33.
Zurück zum Zitat Stainier, L., Ortiz, M.: Study and validation of a variational theory of thermo mechanical coupling in finite visco-plasticity. Int. J. Solids Struct. 47, 705–715 (2010)MATHCrossRef Stainier, L., Ortiz, M.: Study and validation of a variational theory of thermo mechanical coupling in finite visco-plasticity. Int. J. Solids Struct. 47, 705–715 (2010)MATHCrossRef
34.
Zurück zum Zitat Miehe, C.: A multi-field incremental variational framework for gradient-extended standard dissipative solids. J. Mech. Phys. Solids 59, 898–923 (2011)ADSMathSciNetMATHCrossRef Miehe, C.: A multi-field incremental variational framework for gradient-extended standard dissipative solids. J. Mech. Phys. Solids 59, 898–923 (2011)ADSMathSciNetMATHCrossRef
35.
Zurück zum Zitat Stainier, L.: Consistent incremental approximation of dissipation pseudo-potentials in the variational formulation of thermo-mechanical constitutive updates. Mech. Res. Commun. 38, 315–319 (2011)MATHCrossRef Stainier, L.: Consistent incremental approximation of dissipation pseudo-potentials in the variational formulation of thermo-mechanical constitutive updates. Mech. Res. Commun. 38, 315–319 (2011)MATHCrossRef
36.
Zurück zum Zitat Bleier, N., Mosler, J.: Efficient variational constitutive updates by means of a novel parameterization of the flow rule. Int. J. Numer. Methods Eng. 89, 1120–1143 (2012)MathSciNetMATHCrossRef Bleier, N., Mosler, J.: Efficient variational constitutive updates by means of a novel parameterization of the flow rule. Int. J. Numer. Methods Eng. 89, 1120–1143 (2012)MathSciNetMATHCrossRef
37.
Zurück zum Zitat Brassart, L., Stainier, L., Doghri, I., Delannay, L.: A variational formulation for the incremental homogenization of elasto-plastic composites. J. Mech. Phys. Solids 59, 2455–2475 (2011)ADSMathSciNetMATHCrossRef Brassart, L., Stainier, L., Doghri, I., Delannay, L.: A variational formulation for the incremental homogenization of elasto-plastic composites. J. Mech. Phys. Solids 59, 2455–2475 (2011)ADSMathSciNetMATHCrossRef
38.
Zurück zum Zitat Brassart, L., Stainier, L., Doghri, I., Delannay, L.: Homogenization of elasto-(visco) plastic composites based on an incremental variational principle. Int. J. Plast. 36, 86–112 (2012)MATHCrossRef Brassart, L., Stainier, L., Doghri, I., Delannay, L.: Homogenization of elasto-(visco) plastic composites based on an incremental variational principle. Int. J. Plast. 36, 86–112 (2012)MATHCrossRef
39.
Zurück zum Zitat Brassart, L., Stainier, L.: On convergence properties of variational constitutive updates for elasto-visco-plasticity. GAMM-Mitteilungen 35, 26–42 (2012)MathSciNetMATHCrossRef Brassart, L., Stainier, L.: On convergence properties of variational constitutive updates for elasto-visco-plasticity. GAMM-Mitteilungen 35, 26–42 (2012)MathSciNetMATHCrossRef
40.
Zurück zum Zitat Bartels, A., Bartel, T., Canadija, M., Mosler, J.: On the thermomechanical coupling in dissipative materials: a variational approach for generalized standard materials. J. Mech. Phys. Solids 82, 218–234 (2015)ADSMathSciNetCrossRef Bartels, A., Bartel, T., Canadija, M., Mosler, J.: On the thermomechanical coupling in dissipative materials: a variational approach for generalized standard materials. J. Mech. Phys. Solids 82, 218–234 (2015)ADSMathSciNetCrossRef
41.
Zurück zum Zitat Junker, P., Hackl, K.: A condensed variational model for thermo-mechanically coupled phase transformations in polycrystalline shape memory alloys. J. Mech. Behav. Mater. 22, 111–118 (2013)CrossRef Junker, P., Hackl, K.: A condensed variational model for thermo-mechanically coupled phase transformations in polycrystalline shape memory alloys. J. Mech. Behav. Mater. 22, 111–118 (2013)CrossRef
42.
43.
Zurück zum Zitat Anand, L., Ames, N.M.: On modeling the micro-indentation response of an amorphous polymer. Int. J. Plast. 22, 1123–1170 (2006)MATHCrossRef Anand, L., Ames, N.M.: On modeling the micro-indentation response of an amorphous polymer. Int. J. Plast. 22, 1123–1170 (2006)MATHCrossRef
44.
Zurück zum Zitat Simo, J.C., Taylor, R.L., Pister, K.S.: Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput. Methods Appl. Mech. Eng. 51, 177–208 (1985)ADSMathSciNetMATHCrossRef Simo, J.C., Taylor, R.L., Pister, K.S.: Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput. Methods Appl. Mech. Eng. 51, 177–208 (1985)ADSMathSciNetMATHCrossRef
45.
Zurück zum Zitat Arruda, E.M., Boyce, M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412 (1993)ADSMATHCrossRef Arruda, E.M., Boyce, M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412 (1993)ADSMATHCrossRef
47.
Zurück zum Zitat Ziegler, H.: An Introduction to Thermomechanics. Elsevier, Amsterdam (1977)MATH Ziegler, H.: An Introduction to Thermomechanics. Elsevier, Amsterdam (1977)MATH
48.
Zurück zum Zitat Hill, R.: A general theory of uniqueness and stability in elastic-plastic solids. J. Mech. Phys. Solids 6, 236–249 (1958)ADSMATHCrossRef Hill, R.: A general theory of uniqueness and stability in elastic-plastic solids. J. Mech. Phys. Solids 6, 236–249 (1958)ADSMATHCrossRef
49.
Zurück zum Zitat Ceradini, G.: A maximum principle for the analysis of elastic–plastic systems. Meccanica 1, 77–82 (1966)MATHCrossRef Ceradini, G.: A maximum principle for the analysis of elastic–plastic systems. Meccanica 1, 77–82 (1966)MATHCrossRef
50.
Zurück zum Zitat Maier, G.: Quadratic programming and theory of elastic-perfectly plastic structures. Meccanica 3, 236–249 (1968)MathSciNetMATH Maier, G.: Quadratic programming and theory of elastic-perfectly plastic structures. Meccanica 3, 236–249 (1968)MathSciNetMATH
51.
Zurück zum Zitat Capurso, M., Maier, G.: Incremental elastoplastic analysis and quadratic optimization. Meccanica 5, 107–116 (1970)MATHCrossRef Capurso, M., Maier, G.: Incremental elastoplastic analysis and quadratic optimization. Meccanica 5, 107–116 (1970)MATHCrossRef
52.
Zurück zum Zitat Pereira, N.Z., Feijoo, R.A.: On kinematical minimum principles for rates and increments in plasticity. Meccanica 21, 23–29 (1986)MathSciNetMATHCrossRef Pereira, N.Z., Feijoo, R.A.: On kinematical minimum principles for rates and increments in plasticity. Meccanica 21, 23–29 (1986)MathSciNetMATHCrossRef
53.
Zurück zum Zitat Martin, J.B., Reddy, B.D., Griffin, T.B., Bird, W.W.: Applications of mathematical programming concepts to incremental elastic–plastic analysis. Eng. Struct. 9, 171–176 (1987)CrossRef Martin, J.B., Reddy, B.D., Griffin, T.B., Bird, W.W.: Applications of mathematical programming concepts to incremental elastic–plastic analysis. Eng. Struct. 9, 171–176 (1987)CrossRef
54.
Zurück zum Zitat Mosler, J., Ortiz, M.: Variational h-adaption in finite deformation elasticity and plasticity. Int. J. Numer. Methods Eng. 72, 505–523 (2007)MathSciNetMATHCrossRef Mosler, J., Ortiz, M.: Variational h-adaption in finite deformation elasticity and plasticity. Int. J. Numer. Methods Eng. 72, 505–523 (2007)MathSciNetMATHCrossRef
55.
Zurück zum Zitat Mosler, J., Ortiz, M.: An error-estimate-free and remapping-free variational mesh refinement and coarsening method for dissipative solids at finite strains. Int. J. Numer. Methods Eng. 77, 437–450 (2009)MATHCrossRef Mosler, J., Ortiz, M.: An error-estimate-free and remapping-free variational mesh refinement and coarsening method for dissipative solids at finite strains. Int. J. Numer. Methods Eng. 77, 437–450 (2009)MATHCrossRef
56.
Zurück zum Zitat Weber, G., Anand, L.: Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids. Comput. Methods Appl. Mech. Eng. 79, 173–202 (1990)ADSMATHCrossRef Weber, G., Anand, L.: Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids. Comput. Methods Appl. Mech. Eng. 79, 173–202 (1990)ADSMATHCrossRef
57.
Zurück zum Zitat Dupaix, R.B., Boyce, M.C.: Finite strain behavior of poly(ethylene terephthalate) PET and poly(ethylene terephthalate)-glycol PETG. Polymer 46, 4827–4838 (2005)CrossRef Dupaix, R.B., Boyce, M.C.: Finite strain behavior of poly(ethylene terephthalate) PET and poly(ethylene terephthalate)-glycol PETG. Polymer 46, 4827–4838 (2005)CrossRef
58.
Zurück zum Zitat Dupaix, R.B.: Temperature and rate dependent finite strain behavior of poly(ethylene terephthalate) and poly(ethylene terephthalate)-glycol above the glass transition temperature. Ph.D. thesis, MIT (2003) Dupaix, R.B.: Temperature and rate dependent finite strain behavior of poly(ethylene terephthalate) and poly(ethylene terephthalate)-glycol above the glass transition temperature. Ph.D. thesis, MIT (2003)
Metadaten
Titel
A variational framework for the modeling of glassy polymers under finite strains
verfasst von
Jan-Michel C. Farias
Laurent Stainier
Eduardo Alberto Fancello
Publikationsdatum
11.07.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Continuum Mechanics and Thermodynamics / Ausgabe 4/2020
Print ISSN: 0935-1175
Elektronische ISSN: 1432-0959
DOI
https://doi.org/10.1007/s00161-019-00809-8

Weitere Artikel der Ausgabe 4/2020

Continuum Mechanics and Thermodynamics 4/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.