Skip to main content

2014 | OriginalPaper | Buchkapitel

A Vector Algebra Formulation of Mobile Robot Velocity Kinematics

verfasst von : Alonzo Kelly, Neal Seegmiller

Erschienen in: Field and Service Robotics

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Typical formulations of the forward and inverse velocity kinematics of wheeled mobile robots assume flat terrain, consistent constraints, and no slip at the wheels. Such assumptions can sometimes permit the wheel constraints to be substituted into the differential equation to produce a compact, apparently unconstrained result. However, in the general case, the terrain is not flat, the wheel constraints cannot be eliminated in this way, and they are typically inconsistent if derived from sensed information. In reality, the motion of a wheeled mobile robot (WMR) is restricted to a manifold which more-or-less satisfies the wheel slip constraints while both following the terrain and responding to the inputs. To address these more realistic cases, we have developed a formulation of WMR velocity kinematics as a differential-algebraic system—a constrained differential equation of first order. This paper presents the modeling part of the formulation. The Transport Theorem is used to derive a generic 3D model of the motion at the wheels which is implied by the motion of an arbitrarily articulated body. This wheel equation is the basis for forward and inverse velocity kinematics and for the expression of explicit constraints of wheel slip and terrain following. The result is a mathematically correct method for predicting motion over non-flat terrain for arbitrary wheeled vehicles on arbitrary terrain subject to arbitrary constraints. We validate our formulation by applying it to a Mars rover prototype with a passive suspension in a context where ground truth measurement is easy to obtain. Our approach can constitute a key component of more informed state estimation, motion control, and motion planning algorithms for wheeled mobile robots.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J.C. Alexander, J.H. Maddocks, On the kinematics of wheeled mobile robots. Int. J. Rob. Res. 8(5), 15–27 (1989)CrossRef J.C. Alexander, J.H. Maddocks, On the kinematics of wheeled mobile robots. Int. J. Rob. Res. 8(5), 15–27 (1989)CrossRef
2.
Zurück zum Zitat G. Campion, G. Bastin, B. D’Andrea-Novel, Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Trans. Robot. 12(1), 47–62 (1996) G. Campion, G. Bastin, B. D’Andrea-Novel, Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Trans. Robot. 12(1), 47–62 (1996)
3.
Zurück zum Zitat N. Chakraborty, A. Ghosal, Kinematics of wheeled mobile robots on uneven terrain. Mech. Mach. Theory 39(12), 1273–1287 (2004)CrossRefMATH N. Chakraborty, A. Ghosal, Kinematics of wheeled mobile robots on uneven terrain. Mech. Mach. Theory 39(12), 1273–1287 (2004)CrossRefMATH
4.
Zurück zum Zitat B.J. Choi, S.V. Sreenivasan, Gross motion characteristics of articulated mobile robots with pure rolling capability on smooth uneven surfaces. IEEE Trans. Robot. 15(2), 340–343 (1999) B.J. Choi, S.V. Sreenivasan, Gross motion characteristics of articulated mobile robots with pure rolling capability on smooth uneven surfaces. IEEE Trans. Robot. 15(2), 340–343 (1999)
5.
Zurück zum Zitat I.J. Cox, G.T. Wilfong, Autonomous Robot Vehicles (Springer, New York, 1990)CrossRef I.J. Cox, G.T. Wilfong, Autonomous Robot Vehicles (Springer, New York, 1990)CrossRef
6.
Zurück zum Zitat T. Howard, A. Kelly, Optimal rough terrain trajectory generation for wheeled mobile robots. Int. J. Robot. Res. 26(2), 141–166 (2007)CrossRef T. Howard, A. Kelly, Optimal rough terrain trajectory generation for wheeled mobile robots. Int. J. Robot. Res. 26(2), 141–166 (2007)CrossRef
7.
Zurück zum Zitat D.S. Kim, H.C. Lee, W.H. Kwon, Geometric kinematics modeling of omni-directional autonomous mobile robot and its applications. IEEE Int. Conf. Robot. Autom. 3, 2033–2038 (2000) D.S. Kim, H.C. Lee, W.H. Kwon, Geometric kinematics modeling of omni-directional autonomous mobile robot and its applications. IEEE Int. Conf. Robot. Autom. 3, 2033–2038 (2000)
8.
Zurück zum Zitat P. Lamon, R. Siegwart, 3D position tracking in challenging terrain. Int. J. Robot. Res. 26(2), 167–186 (2007)CrossRef P. Lamon, R. Siegwart, 3D position tracking in challenging terrain. Int. J. Robot. Res. 26(2), 167–186 (2007)CrossRef
9.
Zurück zum Zitat J.Y.S. Luh, M.W. Walker, R.P.C. Paul, On-line computational scheme for mechanical manipulators. J. Dyn. Sys. Meas. Control 102(2), 69–76 (1980)CrossRefMathSciNet J.Y.S. Luh, M.W. Walker, R.P.C. Paul, On-line computational scheme for mechanical manipulators. J. Dyn. Sys. Meas. Control 102(2), 69–76 (1980)CrossRefMathSciNet
10.
Zurück zum Zitat P.F. Muir, C.P. Neuman, Kinematic Modeling of Wheeled Mobile Robots (CMU Robotics Institute Technical Report, 1986) P.F. Muir, C.P. Neuman, Kinematic Modeling of Wheeled Mobile Robots (CMU Robotics Institute Technical Report, 1986)
11.
Zurück zum Zitat R. Rajagopalan, A generic kinematic formulation for wheeled mobile robots. J. Robot. Syst. 14(2), 77–91 (1997)CrossRefMATH R. Rajagopalan, A generic kinematic formulation for wheeled mobile robots. J. Robot. Syst. 14(2), 77–91 (1997)CrossRefMATH
12.
Zurück zum Zitat N. Seegmiller, D. Wettergreen, Control of a passively steered rover using 3-D kinematics. in IEEE/RSJ International Conference on Intelligent Robots and Systems (2011) N. Seegmiller, D. Wettergreen, Control of a passively steered rover using 3-D kinematics. in IEEE/RSJ International Conference on Intelligent Robots and Systems (2011)
13.
Zurück zum Zitat M. Tarokh, G. McDermott, Kinematics modeling and analyses of articulated rovers. IEEE Trans. Robot. 21(4), 539–553 (2005)CrossRef M. Tarokh, G. McDermott, Kinematics modeling and analyses of articulated rovers. IEEE Trans. Robot. 21(4), 539–553 (2005)CrossRef
14.
Zurück zum Zitat D. Titterton, J. Weston, Strapdown Inertial Navigation Technology, 2nd edn. AAAI (2004) D. Titterton, J. Weston, Strapdown Inertial Navigation Technology, 2nd edn. AAAI (2004)
15.
Zurück zum Zitat D. Wettergreen et al., Second experiments in the robotic investigation of life in the Atacama desert of Chile. in Proceedings of 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space (2005) D. Wettergreen et al., Second experiments in the robotic investigation of life in the Atacama desert of Chile. in Proceedings of 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space (2005)
16.
Zurück zum Zitat X. Yun, N. Sarkar, Unified formulation of robotic systems with holonomic and nonholonomic constraints. IEEE Trans. Robot. 14(4), 640–650 (1998) X. Yun, N. Sarkar, Unified formulation of robotic systems with holonomic and nonholonomic constraints. IEEE Trans. Robot. 14(4), 640–650 (1998)
Metadaten
Titel
A Vector Algebra Formulation of Mobile Robot Velocity Kinematics
verfasst von
Alonzo Kelly
Neal Seegmiller
Copyright-Jahr
2014
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-40686-7_41

Neuer Inhalt