Skip to main content
Erschienen in: Autonomous Robots 6/2020

18.06.2020

A velocity control strategy for collision avoidance of autonomous agricultural vehicles

verfasst von: Jinlin Xue, Chengkai Xia, Jun Zou

Erschienen in: Autonomous Robots | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Collision avoidance ability is very important for autonomous agricultural vehicles, but the influence of different obstacles in agricultural environment is rarely taken into account. In this paper, a velocity control strategy for collision avoidance was proposed to adjust the velocity of autonomous agricultural vehicles according to the movement state and dangerous degree of the obstacles and the distance between the obstacles and the vehicles, thus to improve intelligence and safety of the vehicles. The control strategy involved two steps: collision prediction in dynamic environments with an improved obstacle space–time grid map, and velocity generator for collision avoidance with a cloud model. Simulations were conducted on the obstacle collision prediction and the designed cloud generator for velocity control respectively. Simulation results show that the proposed strategy can effectively predict collision with anti-disturbance ability for threat-free obstacles and rapid and accurate velocity output. And it realizes the real-time operation in dynamic environments with an average time of 0.2 s to predict collision. Additionally, field experiments including five trial schemes were performed to test the proposed velocity control strategy on an agricultural robot, where a haystack, a tractor and walking persons were regarded as static or dynamic obstacles. The results of the field experiments show that the proposed velocity control strategy has strong feasibility and effectiveness.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Backman, J., Oksanen, T., & Visala, A. (2013). Collision avoidance method with nonlinear model predictive trajectory control. IFAC Proceedings,46(18), 35–40.CrossRef Backman, J., Oksanen, T., & Visala, A. (2013). Collision avoidance method with nonlinear model predictive trajectory control. IFAC Proceedings,46(18), 35–40.CrossRef
Zurück zum Zitat Ball, D., Upcroft, B., Wyeth, G., Corke, P., English, A., Ross, P., et al. (2016). Vision-based obstacle detection and navigation for an agricultural robot. Journal of Field Robotics,33(8), 1107–1130.CrossRef Ball, D., Upcroft, B., Wyeth, G., Corke, P., English, A., Ross, P., et al. (2016). Vision-based obstacle detection and navigation for an agricultural robot. Journal of Field Robotics,33(8), 1107–1130.CrossRef
Zurück zum Zitat Bechar, A., & Vigneault, C. (2016). Agricultural robots for field operations: Concepts and components. Biosystems Engineering,149, 94–111.CrossRef Bechar, A., & Vigneault, C. (2016). Agricultural robots for field operations: Concepts and components. Biosystems Engineering,149, 94–111.CrossRef
Zurück zum Zitat Bochtis, D. D., Srensen, C. G., & Busato, P. (2014). Advances in agricultural machinery management: A review. Biosystems Engineering,126, 69–81.CrossRef Bochtis, D. D., Srensen, C. G., & Busato, P. (2014). Advances in agricultural machinery management: A review. Biosystems Engineering,126, 69–81.CrossRef
Zurück zum Zitat Campos, Y., Sossa, H., & Pajares, G. (2016). Spatio-temporal analysis for obstacle detection in agricultural videos. Applied Soft Computing,45, 86–97.CrossRef Campos, Y., Sossa, H., & Pajares, G. (2016). Spatio-temporal analysis for obstacle detection in agricultural videos. Applied Soft Computing,45, 86–97.CrossRef
Zurück zum Zitat Elbanhawi, M., & Simic, M. (2014). Randomised kinodynamic motion planning for an autonomous vehicle in semi-structured agricultural areas. Biosystems Engineering,126, 30–44.CrossRef Elbanhawi, M., & Simic, M. (2014). Randomised kinodynamic motion planning for an autonomous vehicle in semi-structured agricultural areas. Biosystems Engineering,126, 30–44.CrossRef
Zurück zum Zitat Gao, X., Li, J., Fan, L., Zhou, Q., Yin, K., Wang, J., et al. (2018). Review of wheeled mobile robot’s navigation problems and application prospects in agriculture. IEEE Access,6, 49248–49268.CrossRef Gao, X., Li, J., Fan, L., Zhou, Q., Yin, K., Wang, J., et al. (2018). Review of wheeled mobile robot’s navigation problems and application prospects in agriculture. IEEE Access,6, 49248–49268.CrossRef
Zurück zum Zitat Konolige, K. (1997). Improved occupancy grids for map building. Autonomous Robots,4(4), 351–367.CrossRef Konolige, K. (1997). Improved occupancy grids for map building. Autonomous Robots,4(4), 351–367.CrossRef
Zurück zum Zitat Li, D., Liu, C., & Gan, W. (2010). A new cognitive model: Cloud model. International Journal of Intelligent Systems,24(3), 357–375.CrossRef Li, D., Liu, C., & Gan, W. (2010). A new cognitive model: Cloud model. International Journal of Intelligent Systems,24(3), 357–375.CrossRef
Zurück zum Zitat Nissimov, S., Goldberger, J., & Alchanatis, V. (2015). Obstacle detection in a greenhouse environment using the kinect sensor. Computers and Electronics in Agriculture,113(C), 104–115.CrossRef Nissimov, S., Goldberger, J., & Alchanatis, V. (2015). Obstacle detection in a greenhouse environment using the kinect sensor. Computers and Electronics in Agriculture,113(C), 104–115.CrossRef
Zurück zum Zitat Reina, G., & Milella, A. (2012). Towards autonomous agriculture: automatic ground detection using trinocular stereovision. Sensors,12(9), 12405–12423.CrossRef Reina, G., & Milella, A. (2012). Towards autonomous agriculture: automatic ground detection using trinocular stereovision. Sensors,12(9), 12405–12423.CrossRef
Zurück zum Zitat Shi, C. X., Wang, Y., & Yang, J. (2010). A local obstacle avoidance method for mobile robots in partially known environment. Robotics and Autonomous Systems,58(5), 425–434.CrossRef Shi, C. X., Wang, Y., & Yang, J. (2010). A local obstacle avoidance method for mobile robots in partially known environment. Robotics and Autonomous Systems,58(5), 425–434.CrossRef
Zurück zum Zitat Sun, X., Cai, C., & Shen, X. (2014). A new cloud model based human-machine cooperative path planning method. Journal of Intelligent and Robotic Systems,79, 3–19.CrossRef Sun, X., Cai, C., & Shen, X. (2014). A new cloud model based human-machine cooperative path planning method. Journal of Intelligent and Robotic Systems,79, 3–19.CrossRef
Zurück zum Zitat Xin, Y., Liang, H., Mei, T., Huang, R., Du, M., Sun, C, Wang, Z., & Jiang, R., (2014). A new occupancy grid of the dynamic environment for autonomous vehicles. In Intelligent vehicles symposium proceedings (pp. 787–792). IEEE. Xin, Y., Liang, H., Mei, T., Huang, R., Du, M., Sun, C, Wang, Z., & Jiang, R., (2014). A new occupancy grid of the dynamic environment for autonomous vehicles. In Intelligent vehicles symposium proceedings (pp. 787–792). IEEE.
Zurück zum Zitat Yin, X., Noguchi, N., & Ishi, K. (2013). Development of an obstacle avoidance system for a field robot using a 3d camera. Engineering in Agriculture Environment and Food,6(2), 41–47.CrossRef Yin, X., Noguchi, N., & Ishi, K. (2013). Development of an obstacle avoidance system for a field robot using a 3d camera. Engineering in Agriculture Environment and Food,6(2), 41–47.CrossRef
Zurück zum Zitat Yu, C., Cherfaoui, V., Bonnifalit, P., & Yang, D. (2020). Managing localization uncertainty to handle semantic lane information from Geo-referenced maps in evidential occupancy grids. Sensors (Basel, Switzerland),20, 352.CrossRef Yu, C., Cherfaoui, V., Bonnifalit, P., & Yang, D. (2020). Managing localization uncertainty to handle semantic lane information from Geo-referenced maps in evidential occupancy grids. Sensors (Basel, Switzerland),20, 352.CrossRef
Metadaten
Titel
A velocity control strategy for collision avoidance of autonomous agricultural vehicles
verfasst von
Jinlin Xue
Chengkai Xia
Jun Zou
Publikationsdatum
18.06.2020
Verlag
Springer US
Erschienen in
Autonomous Robots / Ausgabe 6/2020
Print ISSN: 0929-5593
Elektronische ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-020-09924-x

Weitere Artikel der Ausgabe 6/2020

Autonomous Robots 6/2020 Zur Ausgabe

Neuer Inhalt