Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 6/2020

30.06.2020

A Virtual-Strain-Energy-Density-Based Critical-Plane Criterion to Multiaxial Fatigue Life Prediction

verfasst von: Jing Li, Yuan-ying Qiu, Xiao-long Tong, Lei Gao

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Smith–Watson–Topper (SWT) fatigue damage parameter has been discussed based on the critical-plane concept. It was found that the fatigue life prediction obtained by the SWT model tended to be unconservative during the non-proportional loading as only the tensile components on the plane of maximum principal strain range has been considered. To overcome this shortcoming, a virtual strain energy density model has been proposed using the von-Mises criterion, where the shear component on the plane of maximum principal strain range can be included during the non-proportional loading conditions. However, on the other hand, this model will be equivalent to the SWT model under the uniaxial and/or proportional loading conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D.F. Socie and G.B. Marquis, Multiaxial Fatigue, Society of Auto Engineers Inc, Warrendale, 2000 D.F. Socie and G.B. Marquis, Multiaxial Fatigue, Society of Auto Engineers Inc, Warrendale, 2000
2.
Zurück zum Zitat B.R. You and S.B. Lee, A Critical Review on Multiaxial Fatigue Assessments of Metals, Int. J. Fatigue, 1996, 18, p 235–244CrossRef B.R. You and S.B. Lee, A Critical Review on Multiaxial Fatigue Assessments of Metals, Int. J. Fatigue, 1996, 18, p 235–244CrossRef
3.
Zurück zum Zitat A. Karolczuk and E. Macha, A Review of Critical Plane Orientations in Multiaxial Fatigue Failure Criteria of Metallic Materials, Int. J. Fracture, 2005, 134, p 267–304CrossRef A. Karolczuk and E. Macha, A Review of Critical Plane Orientations in Multiaxial Fatigue Failure Criteria of Metallic Materials, Int. J. Fracture, 2005, 134, p 267–304CrossRef
4.
Zurück zum Zitat G. Rashed, R. Ghajar, and S.J. Hashemi, Evaluation of Multiaxial Fatigue Life Prediction Model Based on Critical Plane for Notched Specimens, Int. J. Damage Mech., 2008, 17, p 419–445CrossRef G. Rashed, R. Ghajar, and S.J. Hashemi, Evaluation of Multiaxial Fatigue Life Prediction Model Based on Critical Plane for Notched Specimens, Int. J. Damage Mech., 2008, 17, p 419–445CrossRef
5.
Zurück zum Zitat G. Stanfield, Discussion on The strength of Metals Under Combined Alternating Stresses. In: H. Gough, H. Pollard, editors. Proceeding of the Institution of Mechanical Engineers, 1935, 131, p. 93. G. Stanfield, Discussion on The strength of Metals Under Combined Alternating Stresses. In: H. Gough, H. Pollard, editors. Proceeding of the Institution of Mechanical Engineers, 1935, 131, p. 93.
6.
Zurück zum Zitat K.N. Smith, P. Watson, and T.H. Topper, A Stress-Strain Function for the Fatigue of Metals, J. Mater., 1970, 5, p 767–778 K.N. Smith, P. Watson, and T.H. Topper, A Stress-Strain Function for the Fatigue of Metals, J. Mater., 1970, 5, p 767–778
7.
Zurück zum Zitat D.F. Socie, Multiaxial Fatigue Damage Models, J. Eng. Mater. Technol., 1987, 109, p 292–298CrossRef D.F. Socie, Multiaxial Fatigue Damage Models, J. Eng. Mater. Technol., 1987, 109, p 292–298CrossRef
8.
Zurück zum Zitat A. Nitta, T. Ogata, and K. Kuwabara, Fatigue Mechanisms and Life Assessment Under High-Strain Biaxial Cyclic Loading of Type 304 Stainless Steel, Fatigue Fract. Engng. Mater. Struct., 1989, 12, p 77–92CrossRef A. Nitta, T. Ogata, and K. Kuwabara, Fatigue Mechanisms and Life Assessment Under High-Strain Biaxial Cyclic Loading of Type 304 Stainless Steel, Fatigue Fract. Engng. Mater. Struct., 1989, 12, p 77–92CrossRef
9.
Zurück zum Zitat K.C. Liu, A method based on virtual strain energy parameters for multiaxial fatigue life prediction. In: Advances in Multiaxial Fatigue, ASTM STP 1191, Philadelphia, USA, 1993, p. 67-84. K.C. Liu, A method based on virtual strain energy parameters for multiaxial fatigue life prediction. In: Advances in Multiaxial Fatigue, ASTM STP 1191, Philadelphia, USA, 1993, p. 67-84.
10.
Zurück zum Zitat G. Glinka, G. Shen, and A. Plumtree, A multiaxial fatigue strain energy density parameter related to the critical fracture plane, Fatigue Fract. Eng. Mater. Struct., 1995, 18, p 37–46CrossRef G. Glinka, G. Shen, and A. Plumtree, A multiaxial fatigue strain energy density parameter related to the critical fracture plane, Fatigue Fract. Eng. Mater. Struct., 1995, 18, p 37–46CrossRef
11.
Zurück zum Zitat W.F. Pan, C.Y. Hung, and L.L. Chen, Fatigue Life Estimation Under Multiaxial Loading, Int. J. Fatigue, 1999, 21, p 3–10CrossRef W.F. Pan, C.Y. Hung, and L.L. Chen, Fatigue Life Estimation Under Multiaxial Loading, Int. J. Fatigue, 1999, 21, p 3–10CrossRef
12.
Zurück zum Zitat T. Lagoda, E. Macha, and W. Bedkowski, A Critical Plane Approach Based on Energy Concepts: Application to Biaxial Random Tension-Compression High-Cycle Fatigue Regime, Int. J. Fatigue, 1999, 21, p 431–443CrossRef T. Lagoda, E. Macha, and W. Bedkowski, A Critical Plane Approach Based on Energy Concepts: Application to Biaxial Random Tension-Compression High-Cycle Fatigue Regime, Int. J. Fatigue, 1999, 21, p 431–443CrossRef
13.
Zurück zum Zitat X. Chen, S. Xu, and D. Huang, A Critical Plane-Strain Energy Density Criterion for Multiaxial Low-Cycle Fatigue Life Under Non-proportional Loading, Fatigue Fract. Eng. Mater. Struct., 1999, 22, p 679–686CrossRef X. Chen, S. Xu, and D. Huang, A Critical Plane-Strain Energy Density Criterion for Multiaxial Low-Cycle Fatigue Life Under Non-proportional Loading, Fatigue Fract. Eng. Mater. Struct., 1999, 22, p 679–686CrossRef
14.
Zurück zum Zitat H. Jahed and A. Varvani-Farahani, Upper and Lower Fatigue Life Limits Model Using Energy-Based Fatigue Properties, Int. J. Fatigue, 2006, 28, p 267–473CrossRef H. Jahed and A. Varvani-Farahani, Upper and Lower Fatigue Life Limits Model Using Energy-Based Fatigue Properties, Int. J. Fatigue, 2006, 28, p 267–473CrossRef
15.
Zurück zum Zitat H. Jahed, A. Varvani-Farahani, M. Noban, and I. Khalaji, An Energy-Based Fatigue Life Assessment Model for Various Metallic Materials Under Proportional And Non-proportional Loading Conditions, Int. J. Fatigue, 2007, 29, p 647–655CrossRef H. Jahed, A. Varvani-Farahani, M. Noban, and I. Khalaji, An Energy-Based Fatigue Life Assessment Model for Various Metallic Materials Under Proportional And Non-proportional Loading Conditions, Int. J. Fatigue, 2007, 29, p 647–655CrossRef
16.
Zurück zum Zitat C.H. Wang and M.V. Brown, Life Prediction Techniques for Variable Amplitude Multiaxial Fatigue—Part 1: Theories, ASME J. Eng. Mater. Technol., 1996, 118, p 367–370CrossRef C.H. Wang and M.V. Brown, Life Prediction Techniques for Variable Amplitude Multiaxial Fatigue—Part 1: Theories, ASME J. Eng. Mater. Technol., 1996, 118, p 367–370CrossRef
17.
Zurück zum Zitat J. Li, C.W. Li, and Z.P. Zhang, Modeling of Stable Cyclic Stress-Strain Responses Under Non-proportional Loading, Z. Angew. Math. Mech., 2018, 98, p 388–411CrossRef J. Li, C.W. Li, and Z.P. Zhang, Modeling of Stable Cyclic Stress-Strain Responses Under Non-proportional Loading, Z. Angew. Math. Mech., 2018, 98, p 388–411CrossRef
18.
Zurück zum Zitat S. Kalluri, P.J. Bonacuse, In-phase and out-of-phase axial-torsional fatigue behavior of Haynes 188 superalloy at 760°C. NASA TM-105765, Washington, USA, 1991. S. Kalluri, P.J. Bonacuse, In-phase and out-of-phase axial-torsional fatigue behavior of Haynes 188 superalloy at 760°C. NASA TM-105765, Washington, USA, 1991.
19.
Zurück zum Zitat S. Kalnaus and Y.Y. Jiang, Fatigue of AL6XN Stainless Steel, J. Eng. Mater. Technol., 2008, 130, p 031013CrossRef S. Kalnaus and Y.Y. Jiang, Fatigue of AL6XN Stainless Steel, J. Eng. Mater. Technol., 2008, 130, p 031013CrossRef
20.
Zurück zum Zitat T.W. Zhao and Y.Y. Jiang, Fatigue of 7075-T651 Aluminum Alloy, Int. J. Fatigue, 2008, 30, p 834–849CrossRef T.W. Zhao and Y.Y. Jiang, Fatigue of 7075-T651 Aluminum Alloy, Int. J. Fatigue, 2008, 30, p 834–849CrossRef
21.
Zurück zum Zitat T.N. Chakherlou and B. Abazadeh, Estimation of Fatigue Life for Plates Including Pre-treated Fastener Holes Using Different Multiaxial Fatigue Criteria, Int. J. Fatigue, 2011, 33, p 343–353CrossRef T.N. Chakherlou and B. Abazadeh, Estimation of Fatigue Life for Plates Including Pre-treated Fastener Holes Using Different Multiaxial Fatigue Criteria, Int. J. Fatigue, 2011, 33, p 343–353CrossRef
22.
Zurück zum Zitat T. Itoh, M. Sakane, M. Ohnami, and D.F. Socie, Nonproportional Low Cycle Fatigue Criterion for Type 304 Stainless Steel, J. Eng. Mater. Technol., 1995, 117, p 285–292CrossRef T. Itoh, M. Sakane, M. Ohnami, and D.F. Socie, Nonproportional Low Cycle Fatigue Criterion for Type 304 Stainless Steel, J. Eng. Mater. Technol., 1995, 117, p 285–292CrossRef
23.
Zurück zum Zitat M.A. Meggiolaro and J.T.P. de Castro, Prediction of Non-proportionality Factors of Multiaxial Histories Using the Moment of Inertia Method, Int. J. Fatigue, 2014, 61, p 151–159CrossRef M.A. Meggiolaro and J.T.P. de Castro, Prediction of Non-proportionality Factors of Multiaxial Histories Using the Moment of Inertia Method, Int. J. Fatigue, 2014, 61, p 151–159CrossRef
24.
Zurück zum Zitat J. Li, Z. Zhang, and C. Li, An Improved Method for Estimation of Ramberg-Osgood Curves of Steels from Monotonic Tensile Properties, Fatigue Fract. Eng. Mater. Struct., 2016, 39, p 412–426CrossRef J. Li, Z. Zhang, and C. Li, An Improved Method for Estimation of Ramberg-Osgood Curves of Steels from Monotonic Tensile Properties, Fatigue Fract. Eng. Mater. Struct., 2016, 39, p 412–426CrossRef
25.
Zurück zum Zitat J. Li, Z.P. Zhang, and C.W. Li, Some Useful Approximations for Wrought Aluminum Alloys Based on Monotonic Tensile Properties and Hardness, Materialwiss. Werkstofftech., 2018, 49, p 80–100 J. Li, Z.P. Zhang, and C.W. Li, Some Useful Approximations for Wrought Aluminum Alloys Based on Monotonic Tensile Properties and Hardness, Materialwiss. Werkstofftech., 2018, 49, p 80–100
26.
Zurück zum Zitat J. Li, Y.Y. Qiu, C.W. Li, and Z.P. Zhang, Some Investigations in Evaluating the Cyclic Stress-Strain Curves of Titanium Alloys, Materialwiss. Werkstofftech., 2018, 49, p 1364–1372CrossRef J. Li, Y.Y. Qiu, C.W. Li, and Z.P. Zhang, Some Investigations in Evaluating the Cyclic Stress-Strain Curves of Titanium Alloys, Materialwiss. Werkstofftech., 2018, 49, p 1364–1372CrossRef
27.
Zurück zum Zitat Z. Lopez and A. Fatemi, A Method of Prediction Cyclic Stress-Strain Curve from Tensile Properties for Steels, Mater. Sci. Eng. A, 2012, 556, p 540–550CrossRef Z. Lopez and A. Fatemi, A Method of Prediction Cyclic Stress-Strain Curve from Tensile Properties for Steels, Mater. Sci. Eng. A, 2012, 556, p 540–550CrossRef
28.
Zurück zum Zitat A. Fatemi, Fatigue and Deformation Under Proportional and Nonproportional Biaxial Loading. Ph.D. Thesis, University of Iowa, USA, 1985. A. Fatemi, Fatigue and Deformation Under Proportional and Nonproportional Biaxial Loading. Ph.D. Thesis, University of Iowa, USA, 1985.
29.
Zurück zum Zitat Z.L. Gao, T.W. Zhao, X.G. Wang, and Y.Y. Jiang, Multiaxial Fatigue of 16MnR Steel, J. Press. Vess. Technol., 2009, 131, p 021403CrossRef Z.L. Gao, T.W. Zhao, X.G. Wang, and Y.Y. Jiang, Multiaxial Fatigue of 16MnR Steel, J. Press. Vess. Technol., 2009, 131, p 021403CrossRef
30.
Zurück zum Zitat D.G. Shang, G.Q. Sun, J. Deng, and C.L. Yan, Multiaxial Fatigue Damge Parameter and Life Prediction for Medium-Carbon Steel Based on the Critical Approach, Int. J. Fatigue, 2007, 29, p 2200–2207CrossRef D.G. Shang, G.Q. Sun, J. Deng, and C.L. Yan, Multiaxial Fatigue Damge Parameter and Life Prediction for Medium-Carbon Steel Based on the Critical Approach, Int. J. Fatigue, 2007, 29, p 2200–2207CrossRef
31.
Zurück zum Zitat G.Q. Sun and D.G. Shang, Prediction of Fatigue Lifetime Under Multiaxial Cyclic Loading Using Finite Element Analysis, Mater. Design, 2010, 31, p 126–133CrossRef G.Q. Sun and D.G. Shang, Prediction of Fatigue Lifetime Under Multiaxial Cyclic Loading Using Finite Element Analysis, Mater. Design, 2010, 31, p 126–133CrossRef
32.
Zurück zum Zitat N. Shamsaei, M. Gladskyi, K. Panasovskyi, S. Shukaev, and A. Fatemi, Multiaxial Fatigue of Titanium Including Step Loading and Load Path Alteration and Sequence Effects, Int. J. Fatigue, 2010, 32, p 1862–1874CrossRef N. Shamsaei, M. Gladskyi, K. Panasovskyi, S. Shukaev, and A. Fatemi, Multiaxial Fatigue of Titanium Including Step Loading and Load Path Alteration and Sequence Effects, Int. J. Fatigue, 2010, 32, p 1862–1874CrossRef
33.
Zurück zum Zitat K.S. Kim, J.C. Park, and J.W. Lee, Multiaxial Fatigue Under Variable Amplitude Loads, J. Eng. Mater. Technol., 1999, 121, p 286–293CrossRef K.S. Kim, J.C. Park, and J.W. Lee, Multiaxial Fatigue Under Variable Amplitude Loads, J. Eng. Mater. Technol., 1999, 121, p 286–293CrossRef
34.
Zurück zum Zitat Y. Jiang, H. Sehitoglu, Fatigue and stress analysis of rolling contact. Report no.161, UILU-ENG 92-3602. College of Engineering, University of Illinois at Urbana-Champaign, 1992. Y. Jiang, H. Sehitoglu, Fatigue and stress analysis of rolling contact. Report no.161, UILU-ENG 92-3602. College of Engineering, University of Illinois at Urbana-Champaign, 1992.
35.
Zurück zum Zitat Y. Jiang, A Fatigue Criterion for General Multiaxial Loading, Fatigue Fract. Eng. Mater. Struct., 2000, 23, p 19–32CrossRef Y. Jiang, A Fatigue Criterion for General Multiaxial Loading, Fatigue Fract. Eng. Mater. Struct., 2000, 23, p 19–32CrossRef
36.
Zurück zum Zitat W.S. Jeon and J.H. Song, An Expert System for Estimation of Fatigue Properties of Metallic Materials, Int. J. Fatigue, 2002, 24, p 685–698CrossRef W.S. Jeon and J.H. Song, An Expert System for Estimation of Fatigue Properties of Metallic Materials, Int. J. Fatigue, 2002, 24, p 685–698CrossRef
37.
Zurück zum Zitat S. Ma, B. Markert, and H. Yuan, Multiaxial Fatigue Life Assessment of Sintered Porous Iron Under Proportional and Non-proportional Loadings, Int. J. Fatigue, 2017, 97, p 214–226CrossRef S. Ma, B. Markert, and H. Yuan, Multiaxial Fatigue Life Assessment of Sintered Porous Iron Under Proportional and Non-proportional Loadings, Int. J. Fatigue, 2017, 97, p 214–226CrossRef
Metadaten
Titel
A Virtual-Strain-Energy-Density-Based Critical-Plane Criterion to Multiaxial Fatigue Life Prediction
verfasst von
Jing Li
Yuan-ying Qiu
Xiao-long Tong
Lei Gao
Publikationsdatum
30.06.2020
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 6/2020
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-04919-2

Weitere Artikel der Ausgabe 6/2020

Journal of Materials Engineering and Performance 6/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.