Skip to main content
main-content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2022 | OriginalPaper | Buchkapitel

A Viscosity Iterative Method with Alternated Inertial Terms for Solving the Split Feasibility Problem

verfasst von: Lulu Liu, Qiao-Li Dong, Shen Wang, Michael Th. Rassias

Erschienen in: High-Dimensional Optimization and Probability

Verlag: Springer International Publishing

share
TEILEN

Abstract

In this paper, we propose a viscosity iterative algorithm with alternated inertial extrapolation step to solve the split feasibility problem, where the self-adaptive stepsize is used. Under appropriate conditions, the proposed algorithm is proved to converge to a solution of the split feasibility problem, which is also the unique solution of a variational inequality problem. Finally, we demonstrate the effectiveness of the algorithm by a numerical example.
Literatur
1.
Zurück zum Zitat H.H. Bauschke, P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd edn. (Springer, Berlin, 2017) CrossRef H.H. Bauschke, P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd edn. (Springer, Berlin, 2017) CrossRef
2.
Zurück zum Zitat C.L. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18, 441–453 (2002) MathSciNetCrossRef C.L. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18, 441–453 (2002) MathSciNetCrossRef
3.
Zurück zum Zitat C.L. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20, 103–120 (2004) MathSciNetCrossRef C.L. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20, 103–120 (2004) MathSciNetCrossRef
4.
Zurück zum Zitat Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8, 221–239 (1994) MathSciNetCrossRef Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8, 221–239 (1994) MathSciNetCrossRef
5.
Zurück zum Zitat Y. Censor, T. Elfving, N. Kopf, T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Prob. 21, 2071–2084 (2005) MathSciNetCrossRef Y. Censor, T. Elfving, N. Kopf, T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Prob. 21, 2071–2084 (2005) MathSciNetCrossRef
6.
Zurück zum Zitat Y. Dang, J. Sun, H. Xu, Inertial accelerated algorithms for solving a split feasibility problem. J. Ind. Manag. Optim. 13, 1383–1394 (2017) MathSciNetCrossRef Y. Dang, J. Sun, H. Xu, Inertial accelerated algorithms for solving a split feasibility problem. J. Ind. Manag. Optim. 13, 1383–1394 (2017) MathSciNetCrossRef
7.
Zurück zum Zitat Q.L. Dong, L. Liu, Y.H. Yao, Self-adaptive projection and contraction methods with alternated inertial terms for solving the split feasibility problem. J. Nonlinear and Convex Anal. 23, 591–605 (2022) MathSciNet Q.L. Dong, L. Liu, Y.H. Yao, Self-adaptive projection and contraction methods with alternated inertial terms for solving the split feasibility problem. J. Nonlinear and Convex Anal. 23, 591–605 (2022) MathSciNet
8.
Zurück zum Zitat Q.L. Dong, Y. Yao, S. He, Weak convergence theorems of the modified relaxed projection algorithms for the split feasibility problem in Hilbert spaces. Optim. Lett. 8, 1031–1046 (2014) MathSciNetCrossRef Q.L. Dong, Y. Yao, S. He, Weak convergence theorems of the modified relaxed projection algorithms for the split feasibility problem in Hilbert spaces. Optim. Lett. 8, 1031–1046 (2014) MathSciNetCrossRef
9.
Zurück zum Zitat Q.L. Dong, Y.C. Tang, Y.J. Cho, T.M. Rassias, “Optimal” choice of the step length of the projection and contraction methods for solving the split feasibility problem. J. Glob. Optim. 71, 341–360 (2018) MathSciNetCrossRef Q.L. Dong, Y.C. Tang, Y.J. Cho, T.M. Rassias, “Optimal” choice of the step length of the projection and contraction methods for solving the split feasibility problem. J. Glob. Optim. 71, 341–360 (2018) MathSciNetCrossRef
10.
Zurück zum Zitat A. Gibali, L. Liu, Y.C. Tang, Note on the modified relaxation CQ algorithm for the split feasibility problem. Optim. Lett. 12, 817–830 (2018) MathSciNetCrossRef A. Gibali, L. Liu, Y.C. Tang, Note on the modified relaxation CQ algorithm for the split feasibility problem. Optim. Lett. 12, 817–830 (2018) MathSciNetCrossRef
11.
Zurück zum Zitat A. Gibali, D.T. Mai, N.T. Vinh, A new relaxed CQ algorithm for solving split feasibility problems in Hilbert spaces and its applications. J. Ind. Manag. Optim. 15, 963–984 (2019) MathSciNetCrossRef A. Gibali, D.T. Mai, N.T. Vinh, A new relaxed CQ algorithm for solving split feasibility problems in Hilbert spaces and its applications. J. Ind. Manag. Optim. 15, 963–984 (2019) MathSciNetCrossRef
12.
Zurück zum Zitat S. He, C. Yang, Solving the variational inequality problem defined on intersectoin of finite level sets. Abstr. Appl. Anal. 8 (2013). Article ID 942315 S. He, C. Yang, Solving the variational inequality problem defined on intersectoin of finite level sets. Abstr. Appl. Anal. 8 (2013). Article ID 942315
13.
Zurück zum Zitat A. Moudafi, Viscosity approximation methods for fixed-points problems. J. Math. Anal. Appl. 241, 46–55 (2000) MathSciNetCrossRef A. Moudafi, Viscosity approximation methods for fixed-points problems. J. Math. Anal. Appl. 241, 46–55 (2000) MathSciNetCrossRef
14.
15.
Zurück zum Zitat B.T. Polyak, Some methods of speeding up the convergence of iteration methods. U.S.S.R. Comput. Math. Math. Phys. 4, 1–17 (1964) B.T. Polyak, Some methods of speeding up the convergence of iteration methods. U.S.S.R. Comput. Math. Math. Phys. 4, 1–17 (1964)
16.
Zurück zum Zitat X.L. Qin, J.C. Yao, A viscosity iterative method for a split feasibility problem. J. Nonlinear and Convex Anal. 20, 1497–1506 (2019) MathSciNetMATH X.L. Qin, J.C. Yao, A viscosity iterative method for a split feasibility problem. J. Nonlinear and Convex Anal. 20, 1497–1506 (2019) MathSciNetMATH
17.
Zurück zum Zitat Y. Shehu, Q.L. Dong, L. Liu, Global and linear convergence of alternated inertial methods for split feasibility problems. RACSAM 115, 53 (2021) MathSciNetCrossRef Y. Shehu, Q.L. Dong, L. Liu, Global and linear convergence of alternated inertial methods for split feasibility problems. RACSAM 115, 53 (2021) MathSciNetCrossRef
18.
Zurück zum Zitat F. Wang, Polyak’s gradient method for split feasibility problem constrained by level sets. Numer. Algor. 77, 925–938 (2018) MathSciNetCrossRef F. Wang, Polyak’s gradient method for split feasibility problem constrained by level sets. Numer. Algor. 77, 925–938 (2018) MathSciNetCrossRef
19.
Zurück zum Zitat J.H. Wang, Y.H. Hu, C. Li, J.C. Yao, Linear convergence of CQ algorithms and applications in gene regulatory network inference. Inverse Prob. 33, 055017 (2017) MathSciNetCrossRef J.H. Wang, Y.H. Hu, C. Li, J.C. Yao, Linear convergence of CQ algorithms and applications in gene regulatory network inference. Inverse Prob. 33, 055017 (2017) MathSciNetCrossRef
20.
Zurück zum Zitat H.K. Xu, Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298, 279–291 (2004) MathSciNetCrossRef H.K. Xu, Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298, 279–291 (2004) MathSciNetCrossRef
21.
Zurück zum Zitat H.K. Xu, Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces, Inverse Probl. 26, 105018 (2010) MathSciNetCrossRef H.K. Xu, Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces, Inverse Probl. 26, 105018 (2010) MathSciNetCrossRef
22.
Zurück zum Zitat L.H. Yen, L.D. Muu, N.T.T. Huyen, An algorithm for a class of split feasibility problems: application to a model in electricity production. Math. Meth. Oper. Res. 84, 549–565 (2016) MathSciNetCrossRef L.H. Yen, L.D. Muu, N.T.T. Huyen, An algorithm for a class of split feasibility problems: application to a model in electricity production. Math. Meth. Oper. Res. 84, 549–565 (2016) MathSciNetCrossRef
23.
Zurück zum Zitat L.H. Yen, N.T.T. Huyen, L.D. Muu, A subgradient algorithm for a class of nonlinear split feasibility problems: application to jointly constrained Nash equilibrium models. J. Global. Optim. 73, 849–868 (2019) MathSciNetCrossRef L.H. Yen, N.T.T. Huyen, L.D. Muu, A subgradient algorithm for a class of nonlinear split feasibility problems: application to jointly constrained Nash equilibrium models. J. Global. Optim. 73, 849–868 (2019) MathSciNetCrossRef
Metadaten
Titel
A Viscosity Iterative Method with Alternated Inertial Terms for Solving the Split Feasibility Problem
verfasst von
Lulu Liu
Qiao-Li Dong
Shen Wang
Michael Th. Rassias
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-031-00832-0_11

Stellenausschreibungen

Anzeige

Premium Partner