Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.04.2019

A wavelet-based hybrid neural network for short-term electricity prices forecasting

Zeitschrift:
Artificial Intelligence Review
Autoren:
Foued Saâdaoui, Hana Rabbouch
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Forecasting is a very important and difficult task for various economic activities. Despite the great evolution of time series modeling, forecasters are still in the hunt for better strategies to improve mathematical models and come up with more accurate predictions. In this respect, several new models, mixing autoregressive processes to artificial neural networks (ANNs), have recently emerged. This is particularly the case for energy economics, where old forecasting tools are replaced by new hybrid strategies. Along the same lines, this paper aims to define a wavelet-based hybridization, involving nonlinear smooth functions, autoregressive fractionally integrated moving average (ARFIMA) model and feedforward ANNs, for electricity spot prices forecasting. The use of the wavelet decomposition in this model allows to characterize certain patterns of power time series, such as the nonlinear trend and multiple seasonal effects, and to exactly extrapolate them over the time scale. In fact, such patterns have already been pointed out as potential causes of the ANN’s inaccuracy. An ARFIMA–ANN model is then used to forecast the resulting irregular component. In the last stage, the smooth and irregular components are recombined to constitute the forecasted price. We will demonstrate the cost-effectiveness of the proposed method using hourly power prices from the Nord Pool Exchange. The testing time series consists of 52,614 observations and corresponds to the period ranging from 2012 to 2017. The results show that the new method is able to provide better interval forecasting than four benchmark models.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​​​​​​​​

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner

    Bildnachweise