Skip to main content
Erschienen in: Computational Mechanics 4/2019

12.08.2018 | Original Paper

A weak form quadrature element formulation of geometrically exact shells incorporating drilling degrees of freedom

verfasst von: Run Zhang, Hongzhi Zhong, Xiaohu Yao

Erschienen in: Computational Mechanics | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Geometrically nonlinear analysis of shell structures is conducted using weak form quadrature elements. A new geometrically exact shell formulation incorporating drilling degrees of freedom is established wherein rotation quaternions in combination with a total Lagrange updating scheme are employed for rotation description. An extended kinematic condition to serve as the drilling rotation constraint, derived from polar decomposition of modified mid-surface deformation gradient, is exactly satisfied in the formulation. Several benchmark examples are presented to illustrate the versatility and robustness of the present formulation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ericksen JL, Truesdell C (1958) Exact theory of stress and strain in rods and shells. Arch Ration Mech Anal 1(4):295–323MathSciNetMATH Ericksen JL, Truesdell C (1958) Exact theory of stress and strain in rods and shells. Arch Ration Mech Anal 1(4):295–323MathSciNetMATH
2.
Zurück zum Zitat Simo JC, Fox DD (1989) On a stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization. Comput Methods Appl Mech Eng 72:267–304CrossRefMATH Simo JC, Fox DD (1989) On a stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization. Comput Methods Appl Mech Eng 72:267–304CrossRefMATH
3.
Zurück zum Zitat Simo JC, Fox DD, Rifai MS (1990) On a stress resultant geometrically exact shell model. Part III: the computational aspects of nonlinear theory. Comput Methods Appl Mech Eng 79:21–74CrossRefMATH Simo JC, Fox DD, Rifai MS (1990) On a stress resultant geometrically exact shell model. Part III: the computational aspects of nonlinear theory. Comput Methods Appl Mech Eng 79:21–74CrossRefMATH
4.
Zurück zum Zitat Rebel G (1998) Finite rotation shell theory including drill rotations and its finite element implementations. Ph.D dissertation, Delft University of Technology Rebel G (1998) Finite rotation shell theory including drill rotations and its finite element implementations. Ph.D dissertation, Delft University of Technology
5.
Zurück zum Zitat MacNeal RH, Wilson CT, Harder RL, Hoff CC (1998) The treatment of shell normals in finite element analysis. Finite Elem Anal Des 30:235–242CrossRefMATH MacNeal RH, Wilson CT, Harder RL, Hoff CC (1998) The treatment of shell normals in finite element analysis. Finite Elem Anal Des 30:235–242CrossRefMATH
6.
Zurück zum Zitat Allman DJ (1984) A compatible triangular element including vertex rotations for plane elasticity problems. Comput Struct 19:1–8CrossRefMATH Allman DJ (1984) A compatible triangular element including vertex rotations for plane elasticity problems. Comput Struct 19:1–8CrossRefMATH
8.
Zurück zum Zitat Fox DD, Simo JC (1992) A drill rotation formulation for geometrically exact shells. Comput Methods Appl Mech Eng 98:329–343MathSciNetCrossRefMATH Fox DD, Simo JC (1992) A drill rotation formulation for geometrically exact shells. Comput Methods Appl Mech Eng 98:329–343MathSciNetCrossRefMATH
9.
Zurück zum Zitat Wriggers P, Gruttmann F (1993) Thin shells with finite rotation formulated in Biot stresses: theory and finite element formulation. Int J Numer Methods Eng 36:2049–2071CrossRefMATH Wriggers P, Gruttmann F (1993) Thin shells with finite rotation formulated in Biot stresses: theory and finite element formulation. Int J Numer Methods Eng 36:2049–2071CrossRefMATH
10.
Zurück zum Zitat Gruttmann F, Wagner W, Wriggers P (1992) A nonlinear quadrilateral shell element with drilling degrees of freedom. Arch Appl Mech 62:474–486CrossRefMATH Gruttmann F, Wagner W, Wriggers P (1992) A nonlinear quadrilateral shell element with drilling degrees of freedom. Arch Appl Mech 62:474–486CrossRefMATH
11.
Zurück zum Zitat Ibrahimbegović A (1994) Stress resultant geometrically nonlinear shell theory with drilling rotations-part I: a consistent formulation. Comput Methods Appl Mech Eng 118:265–284CrossRefMATH Ibrahimbegović A (1994) Stress resultant geometrically nonlinear shell theory with drilling rotations-part I: a consistent formulation. Comput Methods Appl Mech Eng 118:265–284CrossRefMATH
12.
Zurück zum Zitat Reissner E (1974) Linear and nonlinear theory of shells. In: Thin shell structures: theory, experiment and design. Prentice-Hall, Englewood Cliffs, New Jersey, 29–44 Reissner E (1974) Linear and nonlinear theory of shells. In: Thin shell structures: theory, experiment and design. Prentice-Hall, Englewood Cliffs, New Jersey, 29–44
13.
Zurück zum Zitat Wiśniewski K, Turska E (2006) Enhanced Allman quadrilateral for finite drilling rotations. Comput Methods Appl Mech Eng 195:6086–6109CrossRefMATH Wiśniewski K, Turska E (2006) Enhanced Allman quadrilateral for finite drilling rotations. Comput Methods Appl Mech Eng 195:6086–6109CrossRefMATH
14.
Zurück zum Zitat Wiśniewski K (2010) Finite rotation shells: basic equations and finite elements for reissner kinematics. Springer, BerlinCrossRefMATH Wiśniewski K (2010) Finite rotation shells: basic equations and finite elements for reissner kinematics. Springer, BerlinCrossRefMATH
15.
Zurück zum Zitat Tang YQ, Zhong ZH, Chan SL (2016) Geometrically nonlinear analysis of shells by quadrilateral flat shell element with drill, shear, and warping. Int J Numer Meth Eng 108(10):1248–1272MathSciNetCrossRef Tang YQ, Zhong ZH, Chan SL (2016) Geometrically nonlinear analysis of shells by quadrilateral flat shell element with drill, shear, and warping. Int J Numer Meth Eng 108(10):1248–1272MathSciNetCrossRef
16.
Zurück zum Zitat Chróścielewski J, Makowski J, Stumpf H (1992) Genuinely resultant shell finite elements accounting for geometric and material non-linearity. Int J Numer Methods Eng 35:63–94CrossRefMATH Chróścielewski J, Makowski J, Stumpf H (1992) Genuinely resultant shell finite elements accounting for geometric and material non-linearity. Int J Numer Methods Eng 35:63–94CrossRefMATH
17.
Zurück zum Zitat Chróścielewski J, Witkowski W (2006) Four-node semi-EAS element in six–field nonlinear theory of shells. Int J Numer Meth Eng 68:1137–1179CrossRefMATH Chróścielewski J, Witkowski W (2006) Four-node semi-EAS element in six–field nonlinear theory of shells. Int J Numer Meth Eng 68:1137–1179CrossRefMATH
18.
Zurück zum Zitat Campello EMB, Pimenta PM, Wriggers P (2003) A triangular finite shell element based on a fully nonlinear shell formulation. Comput Mech 31:505–518CrossRefMATH Campello EMB, Pimenta PM, Wriggers P (2003) A triangular finite shell element based on a fully nonlinear shell formulation. Comput Mech 31:505–518CrossRefMATH
19.
Zurück zum Zitat Campello EMB, Pimenta PM, Wriggers P (2011) An exact conserving algorithm for nonlinear dynamics with rotational DOFs and general hyperelasticity. Part 2: shells. Comput Mech 48:195–211MathSciNetCrossRefMATH Campello EMB, Pimenta PM, Wriggers P (2011) An exact conserving algorithm for nonlinear dynamics with rotational DOFs and general hyperelasticity. Part 2: shells. Comput Mech 48:195–211MathSciNetCrossRefMATH
20.
Zurück zum Zitat Zhong H, Yu T (2007) Flexural vibration analysis of an eccentric annular Mindlin plate. Arch Appl Mech 77(4):185–195CrossRefMATH Zhong H, Yu T (2007) Flexural vibration analysis of an eccentric annular Mindlin plate. Arch Appl Mech 77(4):185–195CrossRefMATH
21.
23.
Zurück zum Zitat Striz AG, Chen WL, Bert CW (1994) Static analysis of structures by the quadrature element method (QEM). Int J Solids Struct 31(20):2807–2818CrossRefMATH Striz AG, Chen WL, Bert CW (1994) Static analysis of structures by the quadrature element method (QEM). Int J Solids Struct 31(20):2807–2818CrossRefMATH
24.
Zurück zum Zitat Zhong H, Zhang R, Xiao N (2014) A quaternion-based weak form quadrature element formulation for spatial geometrically exact beams. Arch Appl Mech 84(12):1825–1840CrossRef Zhong H, Zhang R, Xiao N (2014) A quaternion-based weak form quadrature element formulation for spatial geometrically exact beams. Arch Appl Mech 84(12):1825–1840CrossRef
25.
Zurück zum Zitat Zhang R, Zhong H (2016) A quadrature element formulation of an energy–momentum conserving algorithm for dynamic analysis of geometrically exact beams. Comput Struct 165:96–106CrossRef Zhang R, Zhong H (2016) A quadrature element formulation of an energy–momentum conserving algorithm for dynamic analysis of geometrically exact beams. Comput Struct 165:96–106CrossRef
26.
Zurück zum Zitat Canuto C, Hussaini MY, Quarteroni A, Zang TA (2006) Spectral methods. fundamentals in single domains. Springer, BerlinMATH Canuto C, Hussaini MY, Quarteroni A, Zang TA (2006) Spectral methods. fundamentals in single domains. Springer, BerlinMATH
27.
Zurück zum Zitat He R, Zhong H (2012) Large deflection elasto-plastic analysis of frames using the weak form quadrature element method. Finite Elem Anal Des 50:125–133CrossRef He R, Zhong H (2012) Large deflection elasto-plastic analysis of frames using the weak form quadrature element method. Finite Elem Anal Des 50:125–133CrossRef
28.
Zurück zum Zitat Zhang R, Zhong H (2015) Weak form quadrature element analysis of geometrically exact shells. Int J Non-Linear Mech 71:63–71CrossRef Zhang R, Zhong H (2015) Weak form quadrature element analysis of geometrically exact shells. Int J Non-Linear Mech 71:63–71CrossRef
29.
Zurück zum Zitat Zhang R, Zhong H (2018) A weak form quadrature element formulation for geometrically exact thin shell analysis. Comput Struct 202:44–59CrossRef Zhang R, Zhong H (2018) A weak form quadrature element formulation for geometrically exact thin shell analysis. Comput Struct 202:44–59CrossRef
31.
Zurück zum Zitat Auricchio F, Carotenuto P, Reali A (2008) On the geometrically exact beam model: a consistent, effective and simple derivation from three-dimensional finite elasticity. Int J Solids Struct 45:4766–4781CrossRefMATH Auricchio F, Carotenuto P, Reali A (2008) On the geometrically exact beam model: a consistent, effective and simple derivation from three-dimensional finite elasticity. Int J Solids Struct 45:4766–4781CrossRefMATH
32.
Zurück zum Zitat Simo JC, Fox DD, Hughes TJR (1992) Formulations of finite elasticity with independent rotations. Comp Methods Appl Mech Eng 95:277–288MathSciNetCrossRefMATH Simo JC, Fox DD, Hughes TJR (1992) Formulations of finite elasticity with independent rotations. Comp Methods Appl Mech Eng 95:277–288MathSciNetCrossRefMATH
33.
Zurück zum Zitat Goldman R (2010) Rethinking quaternions: theory and computation. Morgan & Claypool Publishers, San RafaelCrossRefMATH Goldman R (2010) Rethinking quaternions: theory and computation. Morgan & Claypool Publishers, San RafaelCrossRefMATH
34.
Zurück zum Zitat Davis PI, Rabinowitz P (1984) Methods of numerical integration, 2nd edn. Academic Press, OrlandoMATH Davis PI, Rabinowitz P (1984) Methods of numerical integration, 2nd edn. Academic Press, OrlandoMATH
35.
Zurück zum Zitat Hoff CC, Harder RL, Campbell G, MacNeal RH, Wilson CT (1995) Analysis of shell structures using MSC/NASTRAN’s shell elements with surface normal. In: Proceedings of 1995 MSC World Users’ Conference Universal City, CA, USA Hoff CC, Harder RL, Campbell G, MacNeal RH, Wilson CT (1995) Analysis of shell structures using MSC/NASTRAN’s shell elements with surface normal. In: Proceedings of 1995 MSC World Users’ Conference Universal City, CA, USA
36.
Zurück zum Zitat ABAQUS, Version 6.14 (2014) Dassault Systèmes Simulia Corp., Providence, RI, USA ABAQUS, Version 6.14 (2014) Dassault Systèmes Simulia Corp., Providence, RI, USA
37.
Zurück zum Zitat Cook RD, Malcus DS, Plesha ME, Robert JW (2002) Concepts and applications of finite element analysis, 4th edn. London, Wiley Cook RD, Malcus DS, Plesha ME, Robert JW (2002) Concepts and applications of finite element analysis, 4th edn. London, Wiley
38.
Zurück zum Zitat Ibrahimbegović A, Frey F (1993) Geometrically non-linear method of incompatible modes in application to finite elasticity with independent rotations. Int J Numer Methods Eng 36:4185–4200CrossRefMATH Ibrahimbegović A, Frey F (1993) Geometrically non-linear method of incompatible modes in application to finite elasticity with independent rotations. Int J Numer Methods Eng 36:4185–4200CrossRefMATH
39.
Zurück zum Zitat Merlini T (1997) A variational formulation for finite elasticity with independent rotation and Biot-axial fields. Comput Mech 19:153–168CrossRefMATH Merlini T (1997) A variational formulation for finite elasticity with independent rotation and Biot-axial fields. Comput Mech 19:153–168CrossRefMATH
40.
Zurück zum Zitat Goto WY, Watanabe Y, Kasugai T, Obata M (1992) Elastic buckling phenomenon applicable to deployable rings. Int J Solids Struct 29(7):893–909CrossRef Goto WY, Watanabe Y, Kasugai T, Obata M (1992) Elastic buckling phenomenon applicable to deployable rings. Int J Solids Struct 29(7):893–909CrossRef
41.
Zurück zum Zitat Romero I (2004) The interpolation of rotations and its application to finite element models of geometrically exact rods. Comput Mech 34:121–133MathSciNetCrossRefMATH Romero I (2004) The interpolation of rotations and its application to finite element models of geometrically exact rods. Comput Mech 34:121–133MathSciNetCrossRefMATH
42.
Zurück zum Zitat Basar Y, Ding Y, Schultz R (1992) Refined shear-deformation models for composite laminates with finite rotations. Int J Solids Struct 30:2611–2638CrossRefMATH Basar Y, Ding Y, Schultz R (1992) Refined shear-deformation models for composite laminates with finite rotations. Int J Solids Struct 30:2611–2638CrossRefMATH
43.
Zurück zum Zitat Wagner W, Gruttmann F (2005) A robust non-linear mixed hybrid quadrilateral shell element. Int J Numer Methods Eng 64:635–666CrossRefMATH Wagner W, Gruttmann F (2005) A robust non-linear mixed hybrid quadrilateral shell element. Int J Numer Methods Eng 64:635–666CrossRefMATH
44.
Zurück zum Zitat Crisfield MA (1991) Non-linear finite element analysis of solids and structures. Wiley, LondonMATH Crisfield MA (1991) Non-linear finite element analysis of solids and structures. Wiley, LondonMATH
45.
Zurück zum Zitat Betsch P, Gruttmann F, Stein E (1996) A 4-node finite element for the implementation of general hyperelastic 3D-elasticity at finite strains. Comp Methods Appl Mech Eng 130:57–79MathSciNetCrossRefMATH Betsch P, Gruttmann F, Stein E (1996) A 4-node finite element for the implementation of general hyperelastic 3D-elasticity at finite strains. Comp Methods Appl Mech Eng 130:57–79MathSciNetCrossRefMATH
Metadaten
Titel
A weak form quadrature element formulation of geometrically exact shells incorporating drilling degrees of freedom
verfasst von
Run Zhang
Hongzhi Zhong
Xiaohu Yao
Publikationsdatum
12.08.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 4/2019
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-018-1615-4

Weitere Artikel der Ausgabe 4/2019

Computational Mechanics 4/2019 Zur Ausgabe

Neuer Inhalt