Skip to main content
Erschienen in:

08.02.2024

A Wide Dynamic Range CMOS Differential Rectifier for Radio Frequency Energy Harvesting Systems

verfasst von: Ataollah Mahsafar, Mohammad Yavari

Erschienen in: Circuits, Systems, and Signal Processing | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a radio frequency energy harvesting system with a wide dynamic range rectifier is presented. This rectifier has two feedback and feedforward structures. These paths keep the rectifier’s power conversion efficiency (PCE) high at different input powers and thus create a high dynamic range (DR). This rectifier also has better sensitivity. Advances in the rectifier contribute to more satisfactory results for the final system. The circuit is simulated with 180 nm TSMC CMOS technology at a frequency of 900 MHz. Also, a π-type input impedance matching network circuit is used. This circuit is matched at Pin = − 19.5 dBm and f = 900 MHz. In addition, an off-chip balun is utilized to convert the received single-ended signal to the differential one. The achieved PCE and DR are 86.03% and 9.76 dB, respectively, with a sensitivity of − 19.32 at 1 V output voltage. Furthermore, the overall circuit results indicate a PCE of 76.13%, a DR of 6.3 dB, and a sensitivity of − 18.75 dBm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat M.A. Abouzied, K. Ravichandran, E. Sánchez-Sinencio, A fully integrated reconfigurable self-startup RF energy-harvesting system with storage capability. IEEE J. Solid-State Circuits 52(3), 704–719 (2017)CrossRef M.A. Abouzied, K. Ravichandran, E. Sánchez-Sinencio, A fully integrated reconfigurable self-startup RF energy-harvesting system with storage capability. IEEE J. Solid-State Circuits 52(3), 704–719 (2017)CrossRef
2.
Zurück zum Zitat A.S. Almansouri, M.H. Ouda, K.N. Salama, A CMOS RF-to-DC power converter with 86% efficiency and − 19.2-dBm sensitivity. IEEE Tran. Micro. Theory Tech. 66(5), 2409–2415 (2018)CrossRef A.S. Almansouri, M.H. Ouda, K.N. Salama, A CMOS RF-to-DC power converter with 86% efficiency and − 19.2-dBm sensitivity. IEEE Tran. Micro. Theory Tech. 66(5), 2409–2415 (2018)CrossRef
3.
Zurück zum Zitat M. Ashraf, A maximum power-point tracking multiple-input thermal energy harvesting module. AEU Int. J. Electron. Commun. 121, 153231 (2020)CrossRef M. Ashraf, A maximum power-point tracking multiple-input thermal energy harvesting module. AEU Int. J. Electron. Commun. 121, 153231 (2020)CrossRef
4.
Zurück zum Zitat M. Barati, M. Yavari, A power conversion chain with an internally-set voltage reference and reusing the power receiver coil for wireless bio-implants. Microelectron. J. 74(4), 69–78 (2018)CrossRef M. Barati, M. Yavari, A power conversion chain with an internally-set voltage reference and reusing the power receiver coil for wireless bio-implants. Microelectron. J. 74(4), 69–78 (2018)CrossRef
5.
Zurück zum Zitat S.C. Chandrarathna, J.-W. Lee, A self-resonant boost converter for photovoltaic energy harvesting with a tracking efficiency >90% Over an ultra-wide source range. IEEE J. Solid-State Circuits 57(6), 1865–1876 (2022)CrossRef S.C. Chandrarathna, J.-W. Lee, A self-resonant boost converter for photovoltaic energy harvesting with a tracking efficiency >90% Over an ultra-wide source range. IEEE J. Solid-State Circuits 57(6), 1865–1876 (2022)CrossRef
6.
Zurück zum Zitat G. Chong, H. Ramiah, J. Yin, J. Rajendran, P. Mak, R.P. Martins, A wide-PCE-dynamic-range CMOS cross-coupled differential- drive rectifier for ambient RF energy harvesting. IEEE Trans. Circuits Syst. II Express Briefs 68(6), 1743–1747 (2021) G. Chong, H. Ramiah, J. Yin, J. Rajendran, P. Mak, R.P. Martins, A wide-PCE-dynamic-range CMOS cross-coupled differential- drive rectifier for ambient RF energy harvesting. IEEE Trans. Circuits Syst. II Express Briefs 68(6), 1743–1747 (2021)
7.
Zurück zum Zitat A. Choo, Y.C. Lee, H. Ramiah, Y. Chen, P.-I. Mak, R.P. Martins, A high-PCE range-extension CMOS rectifier employing advanced topology amalgamation technique for ambient RF energy harvesting. IEEE Trans. Circuits Syst. II Express Briefs 70(10), 3747–3751 (2023) A. Choo, Y.C. Lee, H. Ramiah, Y. Chen, P.-I. Mak, R.P. Martins, A high-PCE range-extension CMOS rectifier employing advanced topology amalgamation technique for ambient RF energy harvesting. IEEE Trans. Circuits Syst. II Express Briefs 70(10), 3747–3751 (2023)
8.
Zurück zum Zitat K.K.P. Churchill, H. Ramiah, G. Chong, Y. Chen, P.-I. Mak, R.P. Martins, A fully-integrated ambient RF energy harvesting system with 423-µW output power. Sensors 22(12), 4415 (2022)CrossRef K.K.P. Churchill, H. Ramiah, G. Chong, Y. Chen, P.-I. Mak, R.P. Martins, A fully-integrated ambient RF energy harvesting system with 423-µW output power. Sensors 22(12), 4415 (2022)CrossRef
9.
Zurück zum Zitat J.F. Dickson, On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique. IEEE J. Solid-State Circuits SC-11(3), 374–378 (1976)CrossRef J.F. Dickson, On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique. IEEE J. Solid-State Circuits SC-11(3), 374–378 (1976)CrossRef
10.
Zurück zum Zitat U. Guler, Y. Jia, M. Ghovanloo, A reconfigurable passive RF-to-DC converter for wireless IoT applications. IEEE Trans. Circuits Syst. II Express Briefs 66(11), 1800–1804 (2019) U. Guler, Y. Jia, M. Ghovanloo, A reconfigurable passive RF-to-DC converter for wireless IoT applications. IEEE Trans. Circuits Syst. II Express Briefs 66(11), 1800–1804 (2019)
11.
Zurück zum Zitat D. Khan, S.J. Oh, K. Shehzad, M. Basim, D. Verma, Y.G. Pu, M. Lee, K.C. Hwang, Y. Yang, K.-Y. Lee, An efficient reconfigurable RFDC converter with wide input power range for RF energy harvesting. IEEE Access 8, 79310–79318 (2020)CrossRef D. Khan, S.J. Oh, K. Shehzad, M. Basim, D. Verma, Y.G. Pu, M. Lee, K.C. Hwang, Y. Yang, K.-Y. Lee, An efficient reconfigurable RFDC converter with wide input power range for RF energy harvesting. IEEE Access 8, 79310–79318 (2020)CrossRef
12.
Zurück zum Zitat H. Kim, I. Kwon, Design of high-efficiency CMOS rectifier with low reverse leakage for RF energy harvesting. Electron. Lett. 55(8), 446–448 (2019)CrossRef H. Kim, I. Kwon, Design of high-efficiency CMOS rectifier with low reverse leakage for RF energy harvesting. Electron. Lett. 55(8), 446–448 (2019)CrossRef
13.
Zurück zum Zitat K. Kotani, A. Sasaki, T. Ito, High-efficiency differential-drive CMOS rectifier for UHF RFIDs. IEEE J. Solid-State Circuits 44(11), 3011–3018 (2009)CrossRef K. Kotani, A. Sasaki, T. Ito, High-efficiency differential-drive CMOS rectifier for UHF RFIDs. IEEE J. Solid-State Circuits 44(11), 3011–3018 (2009)CrossRef
14.
Zurück zum Zitat W.W.Y. Lau, L. Siek, 2.45 GHz wide input range CMOS rectifier for RF energy harvesting, in 2017 IEEE Wireless Power Transfer Conference (WPTC) (2017), pp. 1–4 W.W.Y. Lau, L. Siek, 2.45 GHz wide input range CMOS rectifier for RF energy harvesting, in 2017 IEEE Wireless Power Transfer Conference (WPTC) (2017), pp. 1–4
15.
Zurück zum Zitat C.-J. Li, T.-C. Lee, 2.4-GHz High-efficiency adaptive power harvester. IEEE Trans. VLSI Syst. 22(2), 434–438 (2014)MathSciNetCrossRef C.-J. Li, T.-C. Lee, 2.4-GHz High-efficiency adaptive power harvester. IEEE Trans. VLSI Syst. 22(2), 434–438 (2014)MathSciNetCrossRef
16.
Zurück zum Zitat L.-X. Liu et al., An ultra-low-power integrated RF energy harvesting system in 65-nm CMOS process. Circuits Syst. Signal Process. 35(2), 421–441 (2016)CrossRef L.-X. Liu et al., An ultra-low-power integrated RF energy harvesting system in 65-nm CMOS process. Circuits Syst. Signal Process. 35(2), 421–441 (2016)CrossRef
17.
Zurück zum Zitat Y.-L. Lo, W.-H. Chuang, A high-efficiency CMOS rectifier with wide harvesting range and wide band based on MPPT technique for low-power IoT system applications. Circuits Syst. Signal Process. 36(12), 5019–5040 (2017)CrossRef Y.-L. Lo, W.-H. Chuang, A high-efficiency CMOS rectifier with wide harvesting range and wide band based on MPPT technique for low-power IoT system applications. Circuits Syst. Signal Process. 36(12), 5019–5040 (2017)CrossRef
18.
Zurück zum Zitat Y. Lu, H. Dai, M. Huang, M.-K. Law, S.-W. Sin, U. Seng-Pan, R.P. Martins, A wide input range dual-path CMOS rectifier for RF energy harvesting. IEEE Trans. Circuits Syst. II Express Briefs 64(2), 166–170 (2017) Y. Lu, H. Dai, M. Huang, M.-K. Law, S.-W. Sin, U. Seng-Pan, R.P. Martins, A wide input range dual-path CMOS rectifier for RF energy harvesting. IEEE Trans. Circuits Syst. II Express Briefs 64(2), 166–170 (2017)
19.
Zurück zum Zitat A. Mahsafar, M. Yavari, A high dynamic range differential rectifier for RF energy harvesting, in 29th Iranian Conference on Electrical Engineering (ICEE) (2021), pp. 124–128 A. Mahsafar, M. Yavari, A high dynamic range differential rectifier for RF energy harvesting, in 29th Iranian Conference on Electrical Engineering (ICEE) (2021), pp. 124–128
20.
Zurück zum Zitat S.M. Noghabaei, R.L. Radin, Y. Savaria, M. Sawan, A high-efficiency ultra-low-power CMOS rectifier for RF energy harvesting applications, in 2018 IEEE International Symposium on Circuits and Systems (ISCAS) (2018), pp. 1–4 S.M. Noghabaei, R.L. Radin, Y. Savaria, M. Sawan, A high-efficiency ultra-low-power CMOS rectifier for RF energy harvesting applications, in 2018 IEEE International Symposium on Circuits and Systems (ISCAS) (2018), pp. 1–4
21.
Zurück zum Zitat M.H. Ouda, W. Khalil, K.N. Salama, Wide-range adaptive RF-to-DC power converter for UHF RFIDs. IEEE Microw. Wirel. Compon. Lett. 26(8), 634–636 (2016)CrossRef M.H. Ouda, W. Khalil, K.N. Salama, Wide-range adaptive RF-to-DC power converter for UHF RFIDs. IEEE Microw. Wirel. Compon. Lett. 26(8), 634–636 (2016)CrossRef
22.
Zurück zum Zitat M.H. Ouda, W. Khalil, K.N. Salama, Self-biased differential rectifier with enhanced dynamic range for wireless powering. IEEE Trans. Circuits Syst. II Express Briefs 64(5), 515–519 (2017) M.H. Ouda, W. Khalil, K.N. Salama, Self-biased differential rectifier with enhanced dynamic range for wireless powering. IEEE Trans. Circuits Syst. II Express Briefs 64(5), 515–519 (2017)
23.
Zurück zum Zitat P. Prakasam, T.R. Suresh Kumar, T. Velmurugan, S. Nandakumar, Efficient power distribution model for IoT nodes driven by energy harvested from low power ambient RF signal. Microelectron. J. 98, 104665 (2020)CrossRef P. Prakasam, T.R. Suresh Kumar, T. Velmurugan, S. Nandakumar, Efficient power distribution model for IoT nodes driven by energy harvested from low power ambient RF signal. Microelectron. J. 98, 104665 (2020)CrossRef
24.
Zurück zum Zitat B. Razavi, Design of Analog CMOS Integrated Circuits, 2nd edn. (McGraw-Hill, New York, 2016) B. Razavi, Design of Analog CMOS Integrated Circuits, 2nd edn. (McGraw-Hill, New York, 2016)
25.
Zurück zum Zitat P. Saffari, A. Basaligheh, K. Moez, An RF-to-DC rectifier with high efficiency over wide input power range for RF energy harvesting applications. IEEE Trans. Circuits Syst. I Regul. Pap. 66(12), 4862–4875 (2019)CrossRef P. Saffari, A. Basaligheh, K. Moez, An RF-to-DC rectifier with high efficiency over wide input power range for RF energy harvesting applications. IEEE Trans. Circuits Syst. I Regul. Pap. 66(12), 4862–4875 (2019)CrossRef
26.
Zurück zum Zitat N. Shafiee, S. Tewari, B. Calhoun, A. Shrivastava, Infrastructure circuits for lifetime improvement of ultra-low power IoT devices. IEEE Trans. Circuits Syst. I Regul. Pap. 64(9), 2598–2610 (2017)CrossRef N. Shafiee, S. Tewari, B. Calhoun, A. Shrivastava, Infrastructure circuits for lifetime improvement of ultra-low power IoT devices. IEEE Trans. Circuits Syst. I Regul. Pap. 64(9), 2598–2610 (2017)CrossRef
27.
Zurück zum Zitat J.K. Yong, et al., A fully integrated CMOS tri-band ambient RF energy harvesting system for IoT devices, in IEEE Transactions on Circuits and Systems I: Regular Papers (2023) J.K. Yong, et al., A fully integrated CMOS tri-band ambient RF energy harvesting system for IoT devices, in IEEE Transactions on Circuits and Systems I: Regular Papers (2023)
28.
Zurück zum Zitat P.W. Yuen, G. Chong, R. Harikrishnan, A high efficient dual-output rectifier for piezoelectric energy harvesting. AEU Int. J. Electron. Commun. 111, 152922 (2019)CrossRef P.W. Yuen, G. Chong, R. Harikrishnan, A high efficient dual-output rectifier for piezoelectric energy harvesting. AEU Int. J. Electron. Commun. 111, 152922 (2019)CrossRef
Metadaten
Titel
A Wide Dynamic Range CMOS Differential Rectifier for Radio Frequency Energy Harvesting Systems
verfasst von
Ataollah Mahsafar
Mohammad Yavari
Publikationsdatum
08.02.2024
Verlag
Springer US
Erschienen in
Circuits, Systems, and Signal Processing / Ausgabe 5/2024
Print ISSN: 0278-081X
Elektronische ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02607-3