Skip to main content

2025 | OriginalPaper | Buchkapitel

11. Abscheidung und Nutzung von CO2 und CH4

verfasst von : Gunnar Brink

Erschienen in: Energiewende 2.0

Verlag: Springer Fachmedien Wiesbaden

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Zusammenfassung

Dieses Kapitel widmet sich den komplexen Herausforderungen und innovativen Lösungen im Bereich der Abscheidung und Nutzung von CO2 sowie der Vermeidung und Abscheidung von CH4, zwei der potentesten Treibhausgase. Wir beginnen mit einer Diskussion über natürliche Methoden zur CO2-Abscheidung, einschließlich der Rolle von Sümpfen, Feuchtgebieten und Wäldern als effektive Kohlenstoffspeicher. Zudem werden technische Ansätze wie Bioenergy with Carbon Capture and Storage (BECCS) und Carbon Capture and Storage (CCS) beleuchtet, die darauf abzielen, CO2 direkt an der Quelle zu erfassen und sicher zu speichern. Darüber hinaus wird die Bedeutung von Humus als Kohlenstoffspeicher und die Mineralisierung von CO2 mittels Basaltmehl auf landwirtschaftlichen Flächen erörtert. Diese natürlichen und technischen Strategien bieten nicht nur Lösungen zur Minderung der CO2-Emissionen, sondern eröffnen auch neue Geschäftsmodelle, wie das Carbon Farming, die sowohl ökonomische als auch ökologische Vorteile versprechen. In Bezug auf Methan (CH4) beleuchtet das Kapitel die verschiedenen Quellen und Methoden zur Identifikation von CH4-Emissionen sowie die technologischen und biologischen Möglichkeiten, diese Emissionen zu reduzieren, wobei die Methanotrophie, ein biologischer Prozess, bei dem CH4 durch Mikroorganismen in weniger schädliche Substanzen umgewandelt wird, wird als vielversprechender Ansatz zur Verringerung von CH4-Emissionen aus Feuchtgebieten und Mooren hervorgehoben. Zusätzlich werden innovative Technologien wie das Direct Air Capture von CH4 diskutiert, die zwar in der Entwicklung sind, aber das Potenzial haben, zukünftig einen signifikanten Beitrag zur Reduktion von atmosphärischem CH4 zu leisten. Das Kapitel schließt mit einer visionären Perspektive für das Jahr 2050, die darlegt, wie durch die Anwendung und Weiterentwicklung der beschriebenen Methoden und Technologien Ödland in blühende, kohlenstoffbindende Feuchtgebiete, Sümpfe und Moore transformiert werden könnte.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Albrecht, A., & Kandji, S. T. (2003). Carbon sequestration in tropical agroforestry systems. Agriculture, ecosystems & environment, 99(1–3), 15–27.CrossRef Albrecht, A., & Kandji, S. T. (2003). Carbon sequestration in tropical agroforestry systems. Agriculture, ecosystems & environment, 99(1–3), 15–27.CrossRef
Zurück zum Zitat Aminu, M. D., Nabavi, S. A., Rochelle, C. A., & Manovic, V. (2017). A review of developments in carbon dioxide storage. Applied Energy, 208, 1389–1419.CrossRef Aminu, M. D., Nabavi, S. A., Rochelle, C. A., & Manovic, V. (2017). A review of developments in carbon dioxide storage. Applied Energy, 208, 1389–1419.CrossRef
Zurück zum Zitat Azar, C., Martín, J. G., Johansson, D. J., & Sterner, T. (2023). The social cost of methane. Climatic Change, 176(6), 71.CrossRef Azar, C., Martín, J. G., Johansson, D. J., & Sterner, T. (2023). The social cost of methane. Climatic Change, 176(6), 71.CrossRef
Zurück zum Zitat Bastin, J.-F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D., Zohner, C. M., & Crowther, T. W. (2019). The global tree restoration potential. Science, 365(6448), 76–79.CrossRef Bastin, J.-F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D., Zohner, C. M., & Crowther, T. W. (2019). The global tree restoration potential. Science, 365(6448), 76–79.CrossRef
Zurück zum Zitat Beauchemin, K. A., Ungerfeld, E. M., Abdalla, A. L., Alvarez, C., Arndt, C., Becquet, P., Benchaar, C., Berndt, A., Mauricio, R. M., & McAllister, T. A. (2022). Invited review: Current enteric methane mitigation options. Journal of Dairy Science, 105(12), 9297–9326.CrossRef Beauchemin, K. A., Ungerfeld, E. M., Abdalla, A. L., Alvarez, C., Arndt, C., Becquet, P., Benchaar, C., Berndt, A., Mauricio, R. M., & McAllister, T. A. (2022). Invited review: Current enteric methane mitigation options. Journal of Dairy Science, 105(12), 9297–9326.CrossRef
Zurück zum Zitat Beaulne, J., Garneau, M., Magnan, G., & Boucher, É. (2021). Peat deposits store more carbon than trees in forested peatlands of the boreal biome. Scientific Reports, 11. Beaulne, J., Garneau, M., Magnan, G., & Boucher, É. (2021). Peat deposits store more carbon than trees in forested peatlands of the boreal biome. Scientific Reports, 11.
Zurück zum Zitat Brandt, A. R., Heath, G., Kort, E., O’Sullivan, F., Pétron, G., Jordaan, S. M., Tans, P., Wilcox, J., Gopstein, A., & Arent, D. (2014). Methane leaks from North American natural gas systems. Science, 343(6172), 733–735.CrossRef Brandt, A. R., Heath, G., Kort, E., O’Sullivan, F., Pétron, G., Jordaan, S. M., Tans, P., Wilcox, J., Gopstein, A., & Arent, D. (2014). Methane leaks from North American natural gas systems. Science, 343(6172), 733–735.CrossRef
Zurück zum Zitat Bullock, A., & Acreman, M. (2003). The role of wetlands in the hydrological cycle. Hydrology and Earth System Sciences, 7(3), 358–389.CrossRef Bullock, A., & Acreman, M. (2003). The role of wetlands in the hydrological cycle. Hydrology and Earth System Sciences, 7(3), 358–389.CrossRef
Zurück zum Zitat Chaturvedi, O., Handa, A., Kaushal, R., Uthappa, A., Sarvade, S., & Panwar, P. (2016). Biomass production and carbon sequestration through agroforestry. Range Management and Agroforestry, 37(2), 116–127. Chaturvedi, O., Handa, A., Kaushal, R., Uthappa, A., Sarvade, S., & Panwar, P. (2016). Biomass production and carbon sequestration through agroforestry. Range Management and Agroforestry, 37(2), 116–127.
Zurück zum Zitat Chen, Z., Jacob, D. J., Gautam, R., Omara, M., Stavins, R. N., Stowe, R. C., ... & Hancock, S. (2023). Satellite quantification of methane emissions and oil–gas methane intensities from individual countries in the Middle East and North Africa: implications for climate action. Atmospheric Chemistry and Physics, 23(10), 5945–5967. Chen, Z., Jacob, D. J., Gautam, R., Omara, M., Stavins, R. N., Stowe, R. C., ... & Hancock, S. (2023). Satellite quantification of methane emissions and oil–gas methane intensities from individual countries in the Middle East and North Africa: implications for climate action. Atmospheric Chemistry and Physics, 23(10), 5945–5967.
Zurück zum Zitat de Groot, D., Brander, L., & Finlayson, C. M. (2018). Wetland ecosystem services. de Groot, D., Brander, L., & Finlayson, C. M. (2018). Wetland ecosystem services.
Zurück zum Zitat Deka, M., Wani, A. M., & Hussain, M. (2013). Assessment of carbon sequestration of different trees species grown under agroforestry system. Deka, M., Wani, A. M., & Hussain, M. (2013). Assessment of carbon sequestration of different trees species grown under agroforestry system.
Zurück zum Zitat Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., Zeng, G., Zhou, L., & Zheng, B. (2016). Biochar to improve soil fertility. A review. Agronomy for sustainable development, 36, 1–18.CrossRef Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., Zeng, G., Zhou, L., & Zheng, B. (2016). Biochar to improve soil fertility. A review. Agronomy for sustainable development, 36, 1–18.CrossRef
Zurück zum Zitat Friedlingstein, P., O’sullivan, M., Jones, M. W., Andrew, R. M., Bakker, D. C., Hauck, J., Landschützer, P., Le Quéré, C., Luijkx, I. T., & Peters, G. P. (2023). Global carbon budget 2023. Earth System Science Data, 15(12), 5301–5369.CrossRef Friedlingstein, P., O’sullivan, M., Jones, M. W., Andrew, R. M., Bakker, D. C., Hauck, J., Landschützer, P., Le Quéré, C., Luijkx, I. T., & Peters, G. P. (2023). Global carbon budget 2023. Earth System Science Data, 15(12), 5301–5369.CrossRef
Zurück zum Zitat Gerke, J. (2022). The central role of soil organic matter in soil fertility and carbon storage. Soil Systems, 6(2), 33.CrossRef Gerke, J. (2022). The central role of soil organic matter in soil fertility and carbon storage. Soil Systems, 6(2), 33.CrossRef
Zurück zum Zitat Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., Schlesinger, W. H., Shoch, D., Siikamäki, J. V., & Smith, P. (2017). Natural climate solutions. Proceedings of the National Academy of Sciences, 114(44), 11645–11650.CrossRef Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., Schlesinger, W. H., Shoch, D., Siikamäki, J. V., & Smith, P. (2017). Natural climate solutions. Proceedings of the National Academy of Sciences, 114(44), 11645–11650.CrossRef
Zurück zum Zitat Guerrero-Cruz, S., Vaksmaa, A., Horn, M. A., Niemann, H., Pijuan, M., & Ho, A. (2021). Methanotrophs: discoveries, environmental relevance, and a perspective on current and future applications. Frontiers in microbiology, 12, 678057.CrossRef Guerrero-Cruz, S., Vaksmaa, A., Horn, M. A., Niemann, H., Pijuan, M., & Ho, A. (2021). Methanotrophs: discoveries, environmental relevance, and a perspective on current and future applications. Frontiers in microbiology, 12, 678057.CrossRef
Zurück zum Zitat Hemes, K. S., Chamberlain, S. D., Eichelmann, E., Anthony, T., Valach, A., Kasak, K., Szutu, D., Verfaillie, J., Silver, W. L., & Baldocchi, D. D. (2019). Assessing the carbon and climate benefit of restoring degraded agricultural peat soils to managed wetlands. Agricultural and Forest Meteorology, 268, 202–214.CrossRef Hemes, K. S., Chamberlain, S. D., Eichelmann, E., Anthony, T., Valach, A., Kasak, K., Szutu, D., Verfaillie, J., Silver, W. L., & Baldocchi, D. D. (2019). Assessing the carbon and climate benefit of restoring degraded agricultural peat soils to managed wetlands. Agricultural and Forest Meteorology, 268, 202–214.CrossRef
Zurück zum Zitat Hopkins, W. G. (2006). Photosynthesis and respiration. Hopkins, W. G. (2006). Photosynthesis and respiration.
Zurück zum Zitat Jose, S., & Bardhan, S. (2012). Agroforestry for biomass production and carbon sequestration: an overview. Agroforestry systems, 86, 105–111.CrossRef Jose, S., & Bardhan, S. (2012). Agroforestry for biomass production and carbon sequestration: an overview. Agroforestry systems, 86, 105–111.CrossRef
Zurück zum Zitat Kearns, D., Liu, H., & Consoli, C. (2021). Technology readiness and costs of CCS. Global CCS institute, 3. Kearns, D., Liu, H., & Consoli, C. (2021). Technology readiness and costs of CCS. Global CCS institute, 3.
Zurück zum Zitat Kennady, V., Biswal, J., & Rahman, H. (2020). Amelioration of methane production from livestock production systems through effective management strategies. Journal of entomology and zoology studies. Kennady, V., Biswal, J., & Rahman, H. (2020). Amelioration of methane production from livestock production systems through effective management strategies. Journal of entomology and zoology studies.
Zurück zum Zitat Koch, K., Thomas, S., Arana, E., Roest, G., & Schade, G. W. (2016). On Methane Leaks from Pipelines in Bryan and College Station, Texas, USA. The Open Atmospheric Science Journal, 10(1). Koch, K., Thomas, S., Arana, E., Roest, G., & Schade, G. W. (2016). On Methane Leaks from Pipelines in Bryan and College Station, Texas, USA. The Open Atmospheric Science Journal, 10(1).
Zurück zum Zitat Lackner, K. S. (2020). Practical constraints on atmospheric methane removal. Nature Sustainability, 3(5), 357–357.CrossRef Lackner, K. S. (2020). Practical constraints on atmospheric methane removal. Nature Sustainability, 3(5), 357–357.CrossRef
Zurück zum Zitat Lal, R. (2021). Soil management for carbon sequestration. South African Journal of Plant and Soil, 38(3), 231–237.CrossRef Lal, R. (2021). Soil management for carbon sequestration. South African Journal of Plant and Soil, 38(3), 231–237.CrossRef
Zurück zum Zitat Liu, L., He, H., Cai, Y., Hang, J., Liu, J., Liu, L., Jiang, P., & He, H. (2023). Cooling effects of wetland parks in hot and humid areas based on remote sensing images and local climate zone scheme. Building and Environment, 243, 110660.CrossRef Liu, L., He, H., Cai, Y., Hang, J., Liu, J., Liu, L., Jiang, P., & He, H. (2023). Cooling effects of wetland parks in hot and humid areas based on remote sensing images and local climate zone scheme. Building and Environment, 243, 110660.CrossRef
Zurück zum Zitat Lolu, A. J., Ahluwalia, A. S., Sidhu, M. C., Reshi, Z. A., & Mandotra, S. K. (2019). Carbon Sequestration and Storage by Wetlands: Implications in the Climate Change Scenario. Restoration of Wetland Ecosystem: A Trajectory Towards a Sustainable Environment. Lolu, A. J., Ahluwalia, A. S., Sidhu, M. C., Reshi, Z. A., & Mandotra, S. K. (2019). Carbon Sequestration and Storage by Wetlands: Implications in the Climate Change Scenario. Restoration of Wetland Ecosystem: A Trajectory Towards a Sustainable Environment.
Zurück zum Zitat Luo, J., Xie, Y., Hou, M. Z., Xiong, Y., Wu, X., Lüddeke, C. T., & Huang, L. (2023). Advances in subsea carbon dioxide utilization and storage. Energy Reviews, 2(1), 100016.CrossRef Luo, J., Xie, Y., Hou, M. Z., Xiong, Y., Wu, X., Lüddeke, C. T., & Huang, L. (2023). Advances in subsea carbon dioxide utilization and storage. Energy Reviews, 2(1), 100016.CrossRef
Zurück zum Zitat Majumdar, D. (2009). Nitrous oxide emission from crop fields and its role in atmospheric radiative forcing. In Climate Change and Crops (pp. 147–190). Springer. Majumdar, D. (2009). Nitrous oxide emission from crop fields and its role in atmospheric radiative forcing. In Climate Change and Crops (pp. 147–190). Springer.
Zurück zum Zitat Maneke‐Fiegenbaum, F., Santos, S. H., Klemm, O., Yu, J. C., Chiang, P. N., & Lai, Y. J. (2021). Carbon dioxide fluxes of a young deciduous afforestation under the influence of seasonal precipitation patterns and frequent typhoon occurrence. Journal of Geophysical Research: Biogeosciences, 126(2), e2020JG005996. Maneke‐Fiegenbaum, F., Santos, S. H., Klemm, O., Yu, J. C., Chiang, P. N., & Lai, Y. J. (2021). Carbon dioxide fluxes of a young deciduous afforestation under the influence of seasonal precipitation patterns and frequent typhoon occurrence. Journal of Geophysical Research: Biogeosciences, 126(2), e2020JG005996.
Zurück zum Zitat McConnachie, M., Konarova, M., & Smart, S. (2023). Literature review of the catalytic pyrolysis of methane for hydrogen and carbon production. International Journal of Hydrogen Energy. McConnachie, M., Konarova, M., & Smart, S. (2023). Literature review of the catalytic pyrolysis of methane for hydrogen and carbon production. International Journal of Hydrogen Energy.
Zurück zum Zitat Moore, D., Heilweck, M., Fears, M., Burton, W., Petros, P., Squires, S. J., Tamburini, E., & Waldron Jr, R. P. (2022). An assessment of the potential value for climate remediation of ocean calcifiers in sequestration of atmospheric carbon. ScienceOpen Preprints. Moore, D., Heilweck, M., Fears, M., Burton, W., Petros, P., Squires, S. J., Tamburini, E., & Waldron Jr, R. P. (2022). An assessment of the potential value for climate remediation of ocean calcifiers in sequestration of atmospheric carbon. ScienceOpen Preprints.
Zurück zum Zitat Morris, P. J. (2021). Wetter is better for peat carbon. Nature Climate Change, 11(7), 561–562.CrossRef Morris, P. J. (2021). Wetter is better for peat carbon. Nature Climate Change, 11(7), 561–562.CrossRef
Zurück zum Zitat Nisbet, E., Fisher, R., Lowry, D., France, J., Allen, G., Bakkaloglu, S., Broderick, T., Cain, M., Coleman, M., & Fernandez, J. (2020). Methane mitigation: methods to reduce emissions, on the path to the Paris agreement. Reviews of Geophysics, 58(1), e2019RG000675. Nisbet, E., Fisher, R., Lowry, D., France, J., Allen, G., Bakkaloglu, S., Broderick, T., Cain, M., Coleman, M., & Fernandez, J. (2020). Methane mitigation: methods to reduce emissions, on the path to the Paris agreement. Reviews of Geophysics, 58(1), e2019RG000675.
Zurück zum Zitat Oelkers, E. H., Gislason, S. R., & Matter, J. (2008). Mineral carbonation of CO2. Elements, 4(5), 333–337.CrossRef Oelkers, E. H., Gislason, S. R., & Matter, J. (2008). Mineral carbonation of CO2. Elements, 4(5), 333–337.CrossRef
Zurück zum Zitat Olaguer, E. P., Jeltema, S., Gauthier, T., Jermalowicz, D., Ostaszewski, A., Batterman, S., Xia, T., Raneses, J., Kovalchick, M., & Miller, S. (2022). Landfill emissions of methane inferred from unmanned aerial vehicle and mobile ground measurements. Atmosphere, 13(6), 983.CrossRef Olaguer, E. P., Jeltema, S., Gauthier, T., Jermalowicz, D., Ostaszewski, A., Batterman, S., Xia, T., Raneses, J., Kovalchick, M., & Miller, S. (2022). Landfill emissions of methane inferred from unmanned aerial vehicle and mobile ground measurements. Atmosphere, 13(6), 983.CrossRef
Zurück zum Zitat Pascale, B., Marieni, C., & Saldi, G. (2022). CO2 mineralization in mafic rocks: from laboratory experiments to pilot sites. Proceedings of the 16th Greenhouse Gas Control Technologies Conference (GHGT-16). Pascale, B., Marieni, C., & Saldi, G. (2022). CO2 mineralization in mafic rocks: from laboratory experiments to pilot sites. Proceedings of the 16th Greenhouse Gas Control Technologies Conference (GHGT-16).
Zurück zum Zitat Pérez-Silos, I., Álvarez‐Martínez, J. M., & Barquín, J. (2021). Large-scale afforestation for ecosystem service provisioning: learning from the past to improve the future. Landscape Ecology, 36, 3329–3343.CrossRef Pérez-Silos, I., Álvarez‐Martínez, J. M., & Barquín, J. (2021). Large-scale afforestation for ecosystem service provisioning: learning from the past to improve the future. Landscape Ecology, 36, 3329–3343.CrossRef
Zurück zum Zitat Plaza-Bonilla, D., Álvaro-Fuentes, J., Lampurlanés, J., Arrúe, J. L., & Cantero-Martínez, C. (2020). No-till farming systems to reduce nitrous oxide emissions and increase methane uptake. No-till Farming Systems for Sustainable Agriculture: Challenges and Opportunities, 319–335. Plaza-Bonilla, D., Álvaro-Fuentes, J., Lampurlanés, J., Arrúe, J. L., & Cantero-Martínez, C. (2020). No-till farming systems to reduce nitrous oxide emissions and increase methane uptake. No-till Farming Systems for Sustainable Agriculture: Challenges and Opportunities, 319–335.
Zurück zum Zitat Prather, M. J., Hsu, J., DeLuca, N. M., Jackman, C. H., Oman, L. D., Douglass, A. R., Fleming, E. L., Strahan, S. E., Steenrod, S. D., & Søvde, O. A. (2015). Measuring and modeling the lifetime of nitrous oxide including its variability. Journal of Geophysical Research: Atmospheres, 120(11), 5693–5705.CrossRef Prather, M. J., Hsu, J., DeLuca, N. M., Jackman, C. H., Oman, L. D., Douglass, A. R., Fleming, E. L., Strahan, S. E., Steenrod, S. D., & Søvde, O. A. (2015). Measuring and modeling the lifetime of nitrous oxide including its variability. Journal of Geophysical Research: Atmospheres, 120(11), 5693–5705.CrossRef
Zurück zum Zitat Saderne, V., Geraldi, N. R., Macreadie, P. I., Maher, D. T., Middelburg, J. J., Serrano, O., Almahasheer, H., Arias-Ortiz, A., Cusack, M., & Eyre, B. D. (2019). Role of carbonate burial in Blue Carbon budgets. Nature communications, 10(1), 1106.CrossRef Saderne, V., Geraldi, N. R., Macreadie, P. I., Maher, D. T., Middelburg, J. J., Serrano, O., Almahasheer, H., Arias-Ortiz, A., Cusack, M., & Eyre, B. D. (2019). Role of carbonate burial in Blue Carbon budgets. Nature communications, 10(1), 1106.CrossRef
Zurück zum Zitat Stout, B., Lal, R., & Monger, C. (2016). Carbon capture and sequestration: The roles of agriculture and soils. International Journal of Agricultural and Biological Engineering, 9(1), 1–8. Stout, B., Lal, R., & Monger, C. (2016). Carbon capture and sequestration: The roles of agriculture and soils. International Journal of Agricultural and Biological Engineering, 9(1), 1–8.
Zurück zum Zitat Swoboda, P., Döring, T. F., & Hamer, M. (2022). Remineralizing soils? The agricultural usage of silicate rock powders: A review. Science of the total Environment, 807, 150976.CrossRef Swoboda, P., Döring, T. F., & Hamer, M. (2022). Remineralizing soils? The agricultural usage of silicate rock powders: A review. Science of the total Environment, 807, 150976.CrossRef
Zurück zum Zitat Temmink, R. J., Lamers, L. P., Angelini, C., Bouma, T. J., Fritz, C., van de Koppel, J., Lexmond, R., Rietkerk, M., Silliman, B. R., & Joosten, H. (2022). Recovering wetland biogeomorphic feedbacks to restore the world’s biotic carbon hotspots. Science, 376(6593), eabn1479. Temmink, R. J., Lamers, L. P., Angelini, C., Bouma, T. J., Fritz, C., van de Koppel, J., Lexmond, R., Rietkerk, M., Silliman, B. R., & Joosten, H. (2022). Recovering wetland biogeomorphic feedbacks to restore the world’s biotic carbon hotspots. Science, 376(6593), eabn1479.
Zurück zum Zitat Toensmeier, E. (2016). The carbon farming solution: A global toolkit of perennial crops and regenerative agriculture practices for climate change mitigation and food security. Chelsea Green Publishing. Toensmeier, E. (2016). The carbon farming solution: A global toolkit of perennial crops and regenerative agriculture practices for climate change mitigation and food security. Chelsea Green Publishing.
Zurück zum Zitat Usuga, J. C. L., Toro, J. A. R., Alzate, M. V. R., & Tapias, Á. d. J. L. (2010). Estimation of biomass and carbon stocks in plants, soil and forest floor in different tropical forests. Forest Ecology and Management, 260(10), 1906–1913.CrossRef Usuga, J. C. L., Toro, J. A. R., Alzate, M. V. R., & Tapias, Á. d. J. L. (2010). Estimation of biomass and carbon stocks in plants, soil and forest floor in different tropical forests. Forest Ecology and Management, 260(10), 1906–1913.CrossRef
Zurück zum Zitat Velthof, G., & Rietra, R. (2018). Nitrous oxide emission from agricultural soils (1566–7197). Velthof, G., & Rietra, R. (2018). Nitrous oxide emission from agricultural soils (1566–7197).
Zurück zum Zitat Vogel, A. (2013). Der Torf, seine Natur und Bedeutung. BoD–Books on Demand. Vogel, A. (2013). Der Torf, seine Natur und Bedeutung. BoD–Books on Demand.
Zurück zum Zitat Volkova, L., Roxburgh, S. H., & Weston, C. J. (2021). Effects of prescribed fire frequency on wildfire emissions and carbon sequestration in a fire adapted ecosystem using a comprehensive carbon model. Journal of Environmental Management, 290, 112673.CrossRef Volkova, L., Roxburgh, S. H., & Weston, C. J. (2021). Effects of prescribed fire frequency on wildfire emissions and carbon sequestration in a fire adapted ecosystem using a comprehensive carbon model. Journal of Environmental Management, 290, 112673.CrossRef
Zurück zum Zitat Waldo, N. B., Chistoserdova, L., Hu, D., Gough, H. L., & Neumann, R. B. (2021). Impacts of Wetland Plants on Microbial Community and Methane Metabolisms. Waldo, N. B., Chistoserdova, L., Hu, D., Gough, H. L., & Neumann, R. B. (2021). Impacts of Wetland Plants on Microbial Community and Methane Metabolisms.
Zurück zum Zitat Wilcox, J., & Wilcox, J. (2012). Introduction to carbon capture. Carbon Capture, 1–34. Wilcox, J., & Wilcox, J. (2012). Introduction to carbon capture. Carbon Capture, 1–34.
Zurück zum Zitat Wu, J., Li, Q., Chen, J., Lei, Y., Zhang, Q., Yang, F., Zhang, D., Zhang, Q., & Cheng, X. (2018). Afforestation enhanced soil CH4 uptake rate in subtropical China: Evidence from carbon stable isotope experiments. Soil Biology and Biochemistry, 118, 199–206.CrossRef Wu, J., Li, Q., Chen, J., Lei, Y., Zhang, Q., Yang, F., Zhang, D., Zhang, Q., & Cheng, X. (2018). Afforestation enhanced soil CH4 uptake rate in subtropical China: Evidence from carbon stable isotope experiments. Soil Biology and Biochemistry, 118, 199–206.CrossRef
Zurück zum Zitat Xu, H., He, B., Guo, L., Yan, X., Zeng, Y., Yuan, W., Zhong, Z., Tang, R., Yang, Y., & Liu, H. (2024). Global forest plantations mapping and biomass carbon estimation. Journal of Geophysical Research: Biogeosciences, 129(3), e2023JG007441. Xu, H., He, B., Guo, L., Yan, X., Zeng, Y., Yuan, W., Zhong, Z., Tang, R., Yang, Y., & Liu, H. (2024). Global forest plantations mapping and biomass carbon estimation. Journal of Geophysical Research: Biogeosciences, 129(3), e2023JG007441.
Metadaten
Titel
Abscheidung und Nutzung von CO2 und CH4
verfasst von
Gunnar Brink
Copyright-Jahr
2025
DOI
https://doi.org/10.1007/978-3-658-46041-9_11