Skip to main content

2018 | OriginalPaper | Buchkapitel

Absorption by Particulate Silicon Layer: Theoretical Treatment to Enhance Efficiency of Solar Cells

verfasst von : Alexander A. Miskevich, Valery A. Loiko

Erschienen in: Advances in Silicon Solar Cells

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Absorption of light by single by crystalline silicon spherical particle and 2D and 3D layers from such particles is theoretically investigated in the wavelength range from 0.28 to 1.12 μm. The range of particle diameters from 0.05 to 1000 μm is covered. Absorption coefficient of monolayer of small- and wavelength-sized particles is calculated in the quasicrystalline approximation of the theory of multiple scattering of waves. For monolayer of large particles, the single scattering approximation is used. Absorption by multilayer is examined under the transfer matrix method. The spectral and integral over the sun spectrum absorption coefficients are studied. The results are compared with the data for homogeneous plane-parallel silicon plates of the equivalent volume of material (equivalent plates). The monolayer and multilayer consisting of silicon particles with sizes significantly smaller than the wavelength absorb lesser than the equivalent silicon plates. The absorption coefficient of the monolayer of large particles is smaller than the one of equivalent plate. Absorption by three- and more monolayer systems of such particles is larger than the one of the equivalent plates. Absorption by monolayer of wavelength-sized particles can be significantly larger than the one of the equivalent plate. It is caused by strong resonance scattering by individual silicon particles and strong multiple scattering in particle arrays. The narrow wavelength intervals (up to 10 nm) of the resonance peak spectral absorption coefficient of monolayer can be more than 100 times larger than the one of the equivalent plate. In the wavelength range from 0.8 μm to 1.12 μm, integral absorption coefficient of monolayer can be more than 20 times higher than the one of the plate. Enhancement of light absorption due to tuning of the multilayer parameters is considered. The sketch of the solar cell based on gradient particulate structure of active layer is presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Luque, S. Hegedus (eds.), Handbook of Photovoltaic Science and Engineering, 2nd edn. (Wiley, Chichester, 2011) A. Luque, S. Hegedus (eds.), Handbook of Photovoltaic Science and Engineering, 2nd edn. (Wiley, Chichester, 2011)
2.
Zurück zum Zitat S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley Interscience, Hoboken, 2007) S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley Interscience, Hoboken, 2007)
10.
Zurück zum Zitat R.B. Wehrspohn, J. Üpping, 3D photonic crystals for photon management in solar cells. Paper presented at conference frontiers in optics 2012: Laser Science XXVIII, Rochester, New York, United States, 14–18 October 2012. OSA Technical Digest (online) (Optical Society of America, 2012), paper LTh3G.5. (2012). https://doi.org/10.1364/LS.2012.LTh3G.5 R.B. Wehrspohn, J. Üpping, 3D photonic crystals for photon management in solar cells. Paper presented at conference frontiers in optics 2012: Laser Science XXVIII, Rochester, New York, United States, 14–18 October 2012. OSA Technical Digest (online) (Optical Society of America, 2012), paper LTh3G.5. (2012). https://​doi.​org/​10.​1364/​LS.​2012.​LTh3G.​5
12.
Zurück zum Zitat V.F. Gremenok, M.S. Tivanov, V.B. Zalesski, Solnechnye elementy na osnove poluprovodnikovykh materialov (Solar Cells Based on Semiconductor Materials). (BSU, Minsk, 2007) (in Russian) V.F. Gremenok, M.S. Tivanov, V.B. Zalesski, Solnechnye elementy na osnove poluprovodnikovykh materialov (Solar Cells Based on Semiconductor Materials). (BSU, Minsk, 2007) (in Russian)
31.
Zurück zum Zitat H.C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981) H.C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981)
39.
Zurück zum Zitat V.A. Babenko, L.G. Astafyeva, V.N. Kuzmin, Electromagnetic Scattering in Disperse Media (Praxis Publishing, Chichester, 2003) V.A. Babenko, L.G. Astafyeva, V.N. Kuzmin, Electromagnetic Scattering in Disperse Media (Praxis Publishing, Chichester, 2003)
48.
Zurück zum Zitat E. D. Palik (ed.), Handbook of Optical Constants of Solids (Academic, San Diego, 1985) E. D. Palik (ed.), Handbook of Optical Constants of Solids (Academic, San Diego, 1985)
49.
Zurück zum Zitat C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983) C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)
50.
Zurück zum Zitat M. I. Mishchenko, J. W. Hovenir, L. D. Travis (eds.), Light Scattering by Nonspherical Particles (Academic Press, San Diego, 2000) M. I. Mishchenko, J. W. Hovenir, L. D. Travis (eds.), Light Scattering by Nonspherical Particles (Academic Press, San Diego, 2000)
51.
Zurück zum Zitat M.I. Mishchenko, L.D. Travis, A.A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (University Press, Cambridge, 2002) M.I. Mishchenko, L.D. Travis, A.A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (University Press, Cambridge, 2002)
56.
Zurück zum Zitat A.A. Kokhanovsky, Light Scattering Media Optics. Problems and Solutions, 3rd edn. (Springer, Berlin, 2004) A.A. Kokhanovsky, Light Scattering Media Optics. Problems and Solutions, 3rd edn. (Springer, Berlin, 2004)
57.
Zurück zum Zitat A. Doicu, T. Wried, Y.A. Eremin, Light Scattering by Systems of Particles (Springer, Berlin, 2006)CrossRef A. Doicu, T. Wried, Y.A. Eremin, Light Scattering by Systems of Particles (Springer, Berlin, 2006)CrossRef
65.
Zurück zum Zitat A. Ishimaru, Wave Propagation and Scattering in Random Media. Single Scattering and Transport Theory, vol 1 (Academic, New York, 1978) A. Ishimaru, Wave Propagation and Scattering in Random Media. Single Scattering and Transport Theory, vol 1 (Academic, New York, 1978)
66.
Zurück zum Zitat M. Born, E. Wolf, Principles of Optics, 7th edn. (University Press, Cambridge, 2002) M. Born, E. Wolf, Principles of Optics, 7th edn. (University Press, Cambridge, 2002)
70.
Zurück zum Zitat A.A. Miskevich, V.A. Loiko, Photocell. Republic of Belarus Patent BY 18325, 27 Feb 2012 A.A. Miskevich, V.A. Loiko, Photocell. Republic of Belarus Patent BY 18325, 27 Feb 2012
71.
Zurück zum Zitat A.A. Miskevich, V.A. Loiko, Photocell. Russian Federation Patent RU 2491681, 11 Mar 2012 A.A. Miskevich, V.A. Loiko, Photocell. Russian Federation Patent RU 2491681, 11 Mar 2012
83.
Zurück zum Zitat J.M. Ziman, Models of Disorder (University Press, Cambridge, 1979) J.M. Ziman, Models of Disorder (University Press, Cambridge, 1979)
84.
Zurück zum Zitat Z. Fisher, Statistical Theory of Liquids (University Press, Chicago, 1964) Z. Fisher, Statistical Theory of Liquids (University Press, Chicago, 1964)
85.
Zurück zum Zitat D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988)CrossRef D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988)CrossRef
86.
Zurück zum Zitat G.V. Arfken, H.J. Weber, F.E. Harris, Mathematical Methods for Physicists, 7th edn. (Academic Press, Oxford, 2012) G.V. Arfken, H.J. Weber, F.E. Harris, Mathematical Methods for Physicists, 7th edn. (Academic Press, Oxford, 2012)
89.
Zurück zum Zitat V.A. Loiko, A.V. Konkolovich, Opt. Spectrosc. 85, 563–567 (1998) V.A. Loiko, A.V. Konkolovich, Opt. Spectrosc. 85, 563–567 (1998)
90.
Zurück zum Zitat V.A. Loiko, A.V. Konkolovich, Opt. Spectrosc. 85, 568–573 (1998) V.A. Loiko, A.V. Konkolovich, Opt. Spectrosc. 85, 568–573 (1998)
93.
Zurück zum Zitat L. Tsang, J.A. Kong, K.-H. Ding, C.O. Ao, Scattering of Electromagnetic Waves: Numerical Simulations (Wiley, New York, 2001)CrossRef L. Tsang, J.A. Kong, K.-H. Ding, C.O. Ao, Scattering of Electromagnetic Waves: Numerical Simulations (Wiley, New York, 2001)CrossRef
94.
Zurück zum Zitat L.S. Ornstein, F. Zernike, Proc. Acad. Sci. 17, 793–806 (1914) L.S. Ornstein, F. Zernike, Proc. Acad. Sci. 17, 793–806 (1914)
96.
Zurück zum Zitat A.P. Ivanov, V.A. Loiko, V.P. Dick, Rasprostranenie sveta v plotnoupakovannykh dispersnykh sredakh (Propagation of Light in Close-packed Disperse Media). (Nauka i Tekhnika, Minsk, 1988) (in Russian) A.P. Ivanov, V.A. Loiko, V.P. Dick, Rasprostranenie sveta v plotnoupakovannykh dispersnykh sredakh (Propagation of Light in Close-packed Disperse Media). (Nauka i Tekhnika, Minsk, 1988) (in Russian)
103.
Zurück zum Zitat V.A. Loiko, V.V. Berdnik, The Journal of Photographic Science 48, 12–25 (2003) V.A. Loiko, V.V. Berdnik, The Journal of Photographic Science 48, 12–25 (2003)
105.
Zurück zum Zitat V.A. Loiko, V.V. Berdnik, Part. Part. Syst. Charact. 15, 115–121 (1998.) 10.1002/(SICI)1521-4117(199817)15:3<115::AID-PPSC115>3.0.CO;2-NCrossRef V.A. Loiko, V.V. Berdnik, Part. Part. Syst. Charact. 15, 115–121 (1998.) 10.1002/(SICI)1521-4117(199817)15:3<115::AID-PPSC115>3.0.CO;2-NCrossRef
Metadaten
Titel
Absorption by Particulate Silicon Layer: Theoretical Treatment to Enhance Efficiency of Solar Cells
verfasst von
Alexander A. Miskevich
Valery A. Loiko
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-69703-1_3