Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.03.2010 | KES 2008 | Ausgabe 2/2010

Neural Computing and Applications 2/2010

Accelerated gradient learning algorithm for neural network weights update

Zeitschrift:
Neural Computing and Applications > Ausgabe 2/2010
Autoren:
Željko Hocenski, Mladen Antunoviæ, Damir Filko

Abstract

This work proposes decomposition of square approximation algorithm for neural network weights update. Suggested improvement results in alternative method that converge in less iteration and is inherently parallel. Decomposition enables parallel execution convenient for implementation on computer grid. Improvements are reflected in accelerated learning rate which may be essential for time critical decision processes. Proposed solution is tested and verified on multilayer perceptrons neural network case study, varying a wide range of parameters, such as number of inputs/outputs, length of input/output data, number of neurons and layers. Experimental results show time savings up to 40% in multiple thread execution.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 2/2010

Neural Computing and Applications 2/2010 Zur Ausgabe

Premium Partner

    Bildnachweise