Skip to main content

2020 | OriginalPaper | Buchkapitel

Accelerating Reactions at the DNA Can Slow Down Transient Gene Expression

verfasst von : Pavol Bokes, Julia Klein, Tatjana Petrov

Erschienen in: Computational Methods in Systems Biology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The expression of a gene is characterised by the upstream transcription factors and the biochemical reactions at the DNA processing them. Transient profile of gene expression then depends on the amount of involved transcription factors, and the scale of kinetic rates of regulatory reactions at the DNA. Due to the combinatorial explosion of the number of possible DNA configurations and uncertainty about the rates, a detailed mechanistic model is often difficult to analyse and even to write down. For this reason, modelling practice often abstracts away details such as the relative speed of rates of different reactions at the DNA, and how these reactions connect to one another. In this paper, we investigate how the transient gene expression depends on the topology and scale of the rates of reactions involving the DNA. We consider a generic example where a single protein is regulated through a number of arbitrarily connected DNA configurations, without feedback. In our first result, we analytically show that, if all switching rates are uniformly speeded up, then, as expected, the protein transient is faster and the noise is smaller. Our second result finds that, counter-intuitively, if all rates are fast but some more than others (two orders of magnitude vs. one order of magnitude), the opposite effect may emerge: time to equilibration is slower and protein noise increases. In particular, focusing on the case of a mechanism with four DNA states, we first illustrate the phenomenon numerically over concrete parameter instances. Then, we use singular perturbation analysis to systematically show that, in general, the fast chain with some rates even faster, reduces to a slow-switching chain. Our analysis has wide implications for quantitative modelling of gene regulation: it emphasises the importance of accounting for the network topology of regulation among DNA states, and the importance of accounting for different magnitudes of respective reaction rates. We conclude the paper by discussing the results in context of modelling general collective behaviour.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Becker, J., Brackbill, D., Centola, D.: Network dynamics of social influence in the wisdom of crowds. Proc. Natl. Acad. Sci. 114(26), E5070–E5076 (2017) Becker, J., Brackbill, D., Centola, D.: Network dynamics of social influence in the wisdom of crowds. Proc. Natl. Acad. Sci. 114(26), E5070–E5076 (2017)
3.
Zurück zum Zitat Bintu, L.: Transcriptional regulation by the numbers: applications. Curr. Opin. Genet. Dev. 15(2), 125–135 (2005)CrossRef Bintu, L.: Transcriptional regulation by the numbers: applications. Curr. Opin. Genet. Dev. 15(2), 125–135 (2005)CrossRef
4.
5.
Zurück zum Zitat Cardelli, L., Kwiatkowska, M., Laurenti, L.: Stochastic analysis of chemical reaction networks using linear noise approximation. Biosystems 149, 26–33 (2016)MATHCrossRef Cardelli, L., Kwiatkowska, M., Laurenti, L.: Stochastic analysis of chemical reaction networks using linear noise approximation. Biosystems 149, 26–33 (2016)MATHCrossRef
6.
Zurück zum Zitat Gardner, T.S., Cantor, C.R., Collins, J.J.: Construction of a genetic toggle switch in Escherichia coli. Nature 403(6767), 339 (2000)CrossRef Gardner, T.S., Cantor, C.R., Collins, J.J.: Construction of a genetic toggle switch in Escherichia coli. Nature 403(6767), 339 (2000)CrossRef
7.
Zurück zum Zitat Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)CrossRef Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)CrossRef
8.
Zurück zum Zitat Gjorgjieva, J., Drion, G., Marder, E.: Computational implications of biophysical diversity and multiple timescales in neurons and synapses for circuit performance. Curr. Opin. Neurobiol. 37, 44–52 (2016)CrossRef Gjorgjieva, J., Drion, G., Marder, E.: Computational implications of biophysical diversity and multiple timescales in neurons and synapses for circuit performance. Curr. Opin. Neurobiol. 37, 44–52 (2016)CrossRef
9.
Zurück zum Zitat Goban, A.N., Radulescu, O.: Dynamic and static limitation in multiscale reaction networks, revisited. Adv. Chem. Eng. 34, 103–107 (2008)CrossRef Goban, A.N., Radulescu, O.: Dynamic and static limitation in multiscale reaction networks, revisited. Adv. Chem. Eng. 34, 103–107 (2008)CrossRef
10.
Zurück zum Zitat Greenham, K., McClung, C.R.: Time to build on good design: resolving the temporal dynamics of gene regulatory networks. Proc. Natl. Acad. Sci. 115(25), 6325–6327 (2018)CrossRef Greenham, K., McClung, C.R.: Time to build on good design: resolving the temporal dynamics of gene regulatory networks. Proc. Natl. Acad. Sci. 115(25), 6325–6327 (2018)CrossRef
12.
Zurück zum Zitat Guet, C.C., Elowitz, M.B., Hsing, W., Leibler, S.: Combinatorial synthesis of genetic networks. Science 296(5572), 1466–1470 (2002)CrossRef Guet, C.C., Elowitz, M.B., Hsing, W., Leibler, S.: Combinatorial synthesis of genetic networks. Science 296(5572), 1466–1470 (2002)CrossRef
13.
Zurück zum Zitat Gunawardena, J.: Time-scale separation-Michaelis and Menten’s old idea, still bearing fruit. FEBS J. 281(2), 473–488 (2014)CrossRef Gunawardena, J.: Time-scale separation-Michaelis and Menten’s old idea, still bearing fruit. FEBS J. 281(2), 473–488 (2014)CrossRef
14.
Zurück zum Zitat da Costa Pereira Innocentini, G., Forger, M., Ramos, A.F., Radulescu, O., Hornos, J.E.M.: Multimodality and flexibility of stochastic gene expression. Bull. Math. Biol. 75(12), 2360–2600 (2013)MathSciNetMATH da Costa Pereira Innocentini, G., Forger, M., Ramos, A.F., Radulescu, O., Hornos, J.E.M.: Multimodality and flexibility of stochastic gene expression. Bull. Math. Biol. 75(12), 2360–2600 (2013)MathSciNetMATH
16.
Zurück zum Zitat Kevorkian, J., Cole, J.D., Nayfeh, A.H.: Perturbation methods in applied mathematics. Bull. Am. Math. Soc. 7, 414–420 (1982)CrossRef Kevorkian, J., Cole, J.D., Nayfeh, A.H.: Perturbation methods in applied mathematics. Bull. Am. Math. Soc. 7, 414–420 (1982)CrossRef
17.
Zurück zum Zitat Kurtz, T.G.: Solutions of ordinary differential equations as limits of pure jump Markov processes. J. Appl. Prob. 7(1), 49–58 (1970)MathSciNetMATHCrossRef Kurtz, T.G.: Solutions of ordinary differential equations as limits of pure jump Markov processes. J. Appl. Prob. 7(1), 49–58 (1970)MathSciNetMATHCrossRef
18.
Zurück zum Zitat Kurtz, T.G.: Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. J. Appl. Prob. 8(2), 344–356 (1971)MathSciNetMATHCrossRef Kurtz, T.G.: Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. J. Appl. Prob. 8(2), 344–356 (1971)MathSciNetMATHCrossRef
19.
Zurück zum Zitat Kwok, R.: Five hard truths for synthetic biology. Nature 463(7279), 288–290 (2010)CrossRef Kwok, R.: Five hard truths for synthetic biology. Nature 463(7279), 288–290 (2010)CrossRef
20.
Zurück zum Zitat Lorenz, J., Rauhut, H., Schweitzer, F., Helbing, D.: How social influence can undermine the wisdom of crowd effect. Proc. Natl. Acad. Sci. 108(22), 9020–9025 (2011)CrossRef Lorenz, J., Rauhut, H., Schweitzer, F., Helbing, D.: How social influence can undermine the wisdom of crowd effect. Proc. Natl. Acad. Sci. 108(22), 9020–9025 (2011)CrossRef
21.
Zurück zum Zitat Marchisio, M.A., Stelling, J.: Automatic design of digital synthetic gene circuits. PLoS Comput. Biol. 7(2), e1001083 (2011)CrossRef Marchisio, M.A., Stelling, J.: Automatic design of digital synthetic gene circuits. PLoS Comput. Biol. 7(2), e1001083 (2011)CrossRef
22.
Zurück zum Zitat McAdams, H.H., Arkin, A.: It’s a noisy business! genetic regulation at the Nano-molar scale. Trends Genet. 15(2), 65–69 (1999)CrossRef McAdams, H.H., Arkin, A.: It’s a noisy business! genetic regulation at the Nano-molar scale. Trends Genet. 15(2), 65–69 (1999)CrossRef
23.
24.
Zurück zum Zitat Myers, C.J.: Engineering Genetic Circuits. CRC Press, Boca Raton (2009) Myers, C.J.: Engineering Genetic Circuits. CRC Press, Boca Raton (2009)
26.
Zurück zum Zitat Pagliara, R., Leonard, N.E.: Adaptive susceptibility and heterogeneity in contagion models on networks. IEEE Trans. Automatic Control (2020) Pagliara, R., Leonard, N.E.: Adaptive susceptibility and heterogeneity in contagion models on networks. IEEE Trans. Automatic Control (2020)
27.
Zurück zum Zitat Pájaro, M., Otero-Muras, I., Vázquez, C., Alonso, A.A.: Transient hysteresis and inherent stochasticity in gene regulatory networks. Nat. Commun. 10(1), 1–7 (2019)CrossRef Pájaro, M., Otero-Muras, I., Vázquez, C., Alonso, A.A.: Transient hysteresis and inherent stochasticity in gene regulatory networks. Nat. Commun. 10(1), 1–7 (2019)CrossRef
28.
Zurück zum Zitat Parmar, K., Blyuss, K.B., Kyrychko, Y.N., Hogan., S.J.: Time-delayed models of gene regulatory networks. In: Computational and Mathematical Methods in Medicine (2015) Parmar, K., Blyuss, K.B., Kyrychko, Y.N., Hogan., S.J.: Time-delayed models of gene regulatory networks. In: Computational and Mathematical Methods in Medicine (2015)
29.
Zurück zum Zitat Peleš, S., Munsky, B., Khammash, M.: Reduction and solution of the chemical master equation using time scale separation and finite state projection. J. Chem. Phys. 125(20), 204104 (2006)CrossRef Peleš, S., Munsky, B., Khammash, M.: Reduction and solution of the chemical master equation using time scale separation and finite state projection. J. Chem. Phys. 125(20), 204104 (2006)CrossRef
30.
Zurück zum Zitat Rothenberg, E.V.: Causal gene regulatory network modeling and genomics: second-generation challenges. J. Comput. Biol. 26(7), 703–718 (2019)CrossRef Rothenberg, E.V.: Causal gene regulatory network modeling and genomics: second-generation challenges. J. Comput. Biol. 26(7), 703–718 (2019)CrossRef
31.
Zurück zum Zitat Santillán, M., Mackey, M.C.: Why the lysogenic state of phage \(\lambda \) is so stable: a mathematical modeling approach. Biophys. J. 86(1), 75–84 (2004)CrossRef Santillán, M., Mackey, M.C.: Why the lysogenic state of phage \(\lambda \) is so stable: a mathematical modeling approach. Biophys. J. 86(1), 75–84 (2004)CrossRef
32.
Zurück zum Zitat Schnoerr, D., Sanguinetti, G., Grima, R.: Approximation and inference methods for stochastic biochemical kinetics–a tutorial review. J. Phys. A: Math. Theor. 50(9), 093001 (2017)MathSciNetMATHCrossRef Schnoerr, D., Sanguinetti, G., Grima, R.: Approximation and inference methods for stochastic biochemical kinetics–a tutorial review. J. Phys. A: Math. Theor. 50(9), 093001 (2017)MathSciNetMATHCrossRef
33.
Zurück zum Zitat Segal, E., Widom, J.: From DNA sequence to transcriptional behaviour: a quantitative approach. Nat. Rev. Genet. 10(7), 443–456 (2009)CrossRef Segal, E., Widom, J.: From DNA sequence to transcriptional behaviour: a quantitative approach. Nat. Rev. Genet. 10(7), 443–456 (2009)CrossRef
34.
Zurück zum Zitat Srivastava, R., Haseltine, E.L., Mastny, E., Rawlings, J.B.: The stochastic quasi-steady-state assumption: reducing the model but not the noise. J. Chem. Phys. 134(15), 154109 (2011)CrossRef Srivastava, R., Haseltine, E.L., Mastny, E., Rawlings, J.B.: The stochastic quasi-steady-state assumption: reducing the model but not the noise. J. Chem. Phys. 134(15), 154109 (2011)CrossRef
35.
Zurück zum Zitat Trofimenkoff, E.A.M., Roussel, M.R.: Small binding-site clearance delays are not negligible in gene expression modeling. Math. Biosci. 108376 (2020) Trofimenkoff, E.A.M., Roussel, M.R.: Small binding-site clearance delays are not negligible in gene expression modeling. Math. Biosci. 108376 (2020)
Metadaten
Titel
Accelerating Reactions at the DNA Can Slow Down Transient Gene Expression
verfasst von
Pavol Bokes
Julia Klein
Tatjana Petrov
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-60327-4_3