Skip to main content
Erschienen in: Journal of Computational Electronics 1/2017

03.01.2017

Accuracy balancing for the finite-difference-based solution of the discrete Wigner transport equation

verfasst von: Kyoung-Youm Kim, Saehwa Kim, Ting-wei Tang

Erschienen in: Journal of Computational Electronics | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Wigner transport equation based on the Wigner function which is defined on the phase space describes two actions in orthogonal directions of the phase space: movement (diffusion) in position space and transition in momentum space. Here, we show that for the proper analysis of a resonant tunneling diode using the finite-difference-based solution of the Wigner transport equation, the degree of numerical accuracy in the calculation of the movement in position space should be balanced with that in the evaluation of the transition in momentum space.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Frensley, W.R.: Boundary conditions for open quantum systems driven far from equilibrium. Rev. Mod. Phys. 62, 745–791 (1990)CrossRef Frensley, W.R.: Boundary conditions for open quantum systems driven far from equilibrium. Rev. Mod. Phys. 62, 745–791 (1990)CrossRef
2.
Zurück zum Zitat Jacoboni, C., Bordone, P.: The Wigner-function approach to non-equilibrium electron transport. Rep. Prog. Phys. 67, 1033–1071 (2004)CrossRef Jacoboni, C., Bordone, P.: The Wigner-function approach to non-equilibrium electron transport. Rep. Prog. Phys. 67, 1033–1071 (2004)CrossRef
3.
Zurück zum Zitat Frensley, W.R.: Wigner-function model of a resonant-tunneling semiconductor device. Phys. Rev. B 36, 1570–1580 (1987)CrossRef Frensley, W.R.: Wigner-function model of a resonant-tunneling semiconductor device. Phys. Rev. B 36, 1570–1580 (1987)CrossRef
4.
Zurück zum Zitat Mains, R.K., Haddad, G.I.: Wigner function modeling of resonant tunneling diodes with high peak-to-valley ratios. J. Appl. Phys. 64, 5041–5044 (1988)CrossRef Mains, R.K., Haddad, G.I.: Wigner function modeling of resonant tunneling diodes with high peak-to-valley ratios. J. Appl. Phys. 64, 5041–5044 (1988)CrossRef
5.
Zurück zum Zitat Kluksdahl, N.C., Kriman, A.M., Ferry, D.K., Ringhofer, C.: Self-consistent study of the resonant-tunneling diode. Phys. Rev. B 39, 7720–7735 (1989)CrossRef Kluksdahl, N.C., Kriman, A.M., Ferry, D.K., Ringhofer, C.: Self-consistent study of the resonant-tunneling diode. Phys. Rev. B 39, 7720–7735 (1989)CrossRef
6.
Zurück zum Zitat Jensen, K.L., Buot, F.A.: Numerical aspects on the simulation of I–V characteristics and switching times of resonant tunneling diodes. J. Appl. Phys. 67, 2153–2155 (1990)CrossRef Jensen, K.L., Buot, F.A.: Numerical aspects on the simulation of I–V characteristics and switching times of resonant tunneling diodes. J. Appl. Phys. 67, 2153–2155 (1990)CrossRef
7.
Zurück zum Zitat Buot, F.A., Jensen, K.L.: Lattice Weyl-Wigner formulation of exact many-body quantum-transport theory and applications to novel solid-state quantum-based devices. Phys. Rev. B 42, 9429–9457 (1990)CrossRef Buot, F.A., Jensen, K.L.: Lattice Weyl-Wigner formulation of exact many-body quantum-transport theory and applications to novel solid-state quantum-based devices. Phys. Rev. B 42, 9429–9457 (1990)CrossRef
8.
Zurück zum Zitat Jensen, K.L., Buot, F.A.: Numerical simulation of intrinsic bistability and high-frequency current oscillations in resonant tunneling structures. Phys. Rev. Lett. 66, 1078–1081 (1991)CrossRef Jensen, K.L., Buot, F.A.: Numerical simulation of intrinsic bistability and high-frequency current oscillations in resonant tunneling structures. Phys. Rev. Lett. 66, 1078–1081 (1991)CrossRef
9.
Zurück zum Zitat Tsuchiya, H., Ogawa, M., Miyoshi, T.: Simulation of quantum transport in quantum devices with spatially varying effective mass. IEEE Trans. Electron Devices 38, 1246–1252 (1991)CrossRef Tsuchiya, H., Ogawa, M., Miyoshi, T.: Simulation of quantum transport in quantum devices with spatially varying effective mass. IEEE Trans. Electron Devices 38, 1246–1252 (1991)CrossRef
10.
Zurück zum Zitat Mains, R.K., Haddad, G.I.: An accurate re-formulation of the Wigner function method for quantum transport modeling. J. Comput. Phys. 112, 149–161 (1994)CrossRefMATH Mains, R.K., Haddad, G.I.: An accurate re-formulation of the Wigner function method for quantum transport modeling. J. Comput. Phys. 112, 149–161 (1994)CrossRefMATH
11.
Zurück zum Zitat Kim, K.-Y., Lee, B.: On the high order numerical calculation schemes for the Wigner transport equation. Solid-State Electron. 43, 2243–2245 (1999)CrossRef Kim, K.-Y., Lee, B.: On the high order numerical calculation schemes for the Wigner transport equation. Solid-State Electron. 43, 2243–2245 (1999)CrossRef
12.
Zurück zum Zitat Zaccaria, R.P., Rossi, F.: On the problem of generalizing the semiconductor Bloch equation from a closed to an open system. Phys. Rev. B 67, 113311 (2003)CrossRef Zaccaria, R.P., Rossi, F.: On the problem of generalizing the semiconductor Bloch equation from a closed to an open system. Phys. Rev. B 67, 113311 (2003)CrossRef
13.
Zurück zum Zitat Kim, K.-Y.: A discrete formulation of the Wigner transport equation. J. Appl. Phys. 102, 113705 (2007)CrossRef Kim, K.-Y.: A discrete formulation of the Wigner transport equation. J. Appl. Phys. 102, 113705 (2007)CrossRef
14.
Zurück zum Zitat Kim, K.-Y.: Nonuniform mesh application to discrete Wigner transport equation. Jpn. J. Appl. Phys. 47, 358–360 (2008)CrossRef Kim, K.-Y.: Nonuniform mesh application to discrete Wigner transport equation. Jpn. J. Appl. Phys. 47, 358–360 (2008)CrossRef
15.
Zurück zum Zitat Costolanski, A.S., Kelley, C.T.: Efficient solution of the Wigner–Poisson equations for modeling resonant tunneling diodes. IEEE Trans. Nanotechnol. 9, 708–715 (2010)CrossRef Costolanski, A.S., Kelley, C.T.: Efficient solution of the Wigner–Poisson equations for modeling resonant tunneling diodes. IEEE Trans. Nanotechnol. 9, 708–715 (2010)CrossRef
16.
Zurück zum Zitat Kim, K.-Y., Kim, S.: Effect of uncertainty principle on the Wigner function-based simulation of quantum transport. Solid-State Electron. 111, 22–26 (2015)CrossRef Kim, K.-Y., Kim, S.: Effect of uncertainty principle on the Wigner function-based simulation of quantum transport. Solid-State Electron. 111, 22–26 (2015)CrossRef
17.
Zurück zum Zitat Schulz, D., Mahmood, A.: Approximation of a phase space operator for the numerical solution of the Wigner equation. J. Quantum Electron. 52, 8700109 (2016)CrossRef Schulz, D., Mahmood, A.: Approximation of a phase space operator for the numerical solution of the Wigner equation. J. Quantum Electron. 52, 8700109 (2016)CrossRef
18.
Zurück zum Zitat Kim, K.-Y., Kim, J., Kim, S.: An efficient numerical scheme for the discrete Wigner transport equation via the momentum domain narrowing. AIP Adv. 6, 065314 (2016)CrossRef Kim, K.-Y., Kim, J., Kim, S.: An efficient numerical scheme for the discrete Wigner transport equation via the momentum domain narrowing. AIP Adv. 6, 065314 (2016)CrossRef
19.
Zurück zum Zitat Tsuchiya, H., Ogawa, M., Miyoshi, T.: Quantum-mechanical simulation of electron waveguides in linear and nonlinear transport regimes. IEEE Trans. Electron Devices 39, 2465–2471 (1992)CrossRef Tsuchiya, H., Ogawa, M., Miyoshi, T.: Quantum-mechanical simulation of electron waveguides in linear and nonlinear transport regimes. IEEE Trans. Electron Devices 39, 2465–2471 (1992)CrossRef
20.
Zurück zum Zitat Gehring, A., Kosina, H.: Wigner function-based simulation of quantum transport in scaled DG-MOSFETs using a Monte Carlo method. J. Comput. Electron. 4, 67–70 (2005)CrossRef Gehring, A., Kosina, H.: Wigner function-based simulation of quantum transport in scaled DG-MOSFETs using a Monte Carlo method. J. Comput. Electron. 4, 67–70 (2005)CrossRef
21.
Zurück zum Zitat Kefi-Ferhane, J., Poncet, A.: Deterministic simulation of transport in MOSFETs by coupling Wigner, Poisson and Schrödinger equations. Phys. Status Solidi A 205, 2518–2521 (2008)CrossRef Kefi-Ferhane, J., Poncet, A.: Deterministic simulation of transport in MOSFETs by coupling Wigner, Poisson and Schrödinger equations. Phys. Status Solidi A 205, 2518–2521 (2008)CrossRef
22.
Zurück zum Zitat Barraud, S.: Phase-coherent quantum transport in silicon nanowires based on Wigner transport equation: comparison with the nonequilibrium-Green-function formalism. J. Appl. Phys. 106, 063714 (2009)CrossRef Barraud, S.: Phase-coherent quantum transport in silicon nanowires based on Wigner transport equation: comparison with the nonequilibrium-Green-function formalism. J. Appl. Phys. 106, 063714 (2009)CrossRef
23.
Zurück zum Zitat Yamada, Y., Tsuchiya, H., Ogawa, M.: Quantum transport simulation of silicon-nanowire transistors based on direct solution approach of the Wigner transport equation. IEEE Trans. Electron Devices 56, 1396–1401 (2009)CrossRef Yamada, Y., Tsuchiya, H., Ogawa, M.: Quantum transport simulation of silicon-nanowire transistors based on direct solution approach of the Wigner transport equation. IEEE Trans. Electron Devices 56, 1396–1401 (2009)CrossRef
24.
Zurück zum Zitat Barraud, S.: Dissipative quantum transport in silicon nanowires based on Wigner transport equation. J. Appl. Phys. 110, 093710 (2011)CrossRef Barraud, S.: Dissipative quantum transport in silicon nanowires based on Wigner transport equation. J. Appl. Phys. 110, 093710 (2011)CrossRef
25.
Zurück zum Zitat Poli, S., Pala, M., Poiroux, T., Deleonibus, S., Baccarani, G.: Size dependence of surface-roughness-limited mobility in silicon-nanowire FETs. IEEE Trans. Electron Devices 55, 2968–2976 (2008)CrossRef Poli, S., Pala, M., Poiroux, T., Deleonibus, S., Baccarani, G.: Size dependence of surface-roughness-limited mobility in silicon-nanowire FETs. IEEE Trans. Electron Devices 55, 2968–2976 (2008)CrossRef
26.
Zurück zum Zitat Seoane, N., Martinez, A., Brown, A.R., Barker, J.R., Asenov, A.: Current variability in Si nanowire MOSFETs due to random dopants in the source/drain regions: a fully 3-D NEGF simulation study. IEEE Trans. Electron Devices 56, 1388–1395 (2009)CrossRef Seoane, N., Martinez, A., Brown, A.R., Barker, J.R., Asenov, A.: Current variability in Si nanowire MOSFETs due to random dopants in the source/drain regions: a fully 3-D NEGF simulation study. IEEE Trans. Electron Devices 56, 1388–1395 (2009)CrossRef
27.
Zurück zum Zitat Sellier, J.M., Nedjalkov, M., Dimov, I., Selberherr, S.: A benchmark study of the Wigner Monte Carlo method. Monte Carlo Methods Appl. 20, 43–51 (2014)MathSciNetCrossRefMATH Sellier, J.M., Nedjalkov, M., Dimov, I., Selberherr, S.: A benchmark study of the Wigner Monte Carlo method. Monte Carlo Methods Appl. 20, 43–51 (2014)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Ringhofer, C.: A spectral method for the numerical simulation of quantum tunneling phenomena. SIAM J. Numer. Anal. 27, 32–50 (1990)MathSciNetCrossRefMATH Ringhofer, C.: A spectral method for the numerical simulation of quantum tunneling phenomena. SIAM J. Numer. Anal. 27, 32–50 (1990)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Arnold, A., Ringhofer, C.: An operator splitting method for the Wigner–Poisson problem. SIAM J. Numer. Anal. 33, 1622–1643 (1996)MathSciNetCrossRefMATH Arnold, A., Ringhofer, C.: An operator splitting method for the Wigner–Poisson problem. SIAM J. Numer. Anal. 33, 1622–1643 (1996)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Dorda, A., Schürrer, F.: A WENO-solver combined with adaptive momentum discretization for the Wigner transport equation and its application to resonant tunneling diodes. J. Comput. Phys. 284, 95–116 (2015)MathSciNetCrossRefMATH Dorda, A., Schürrer, F.: A WENO-solver combined with adaptive momentum discretization for the Wigner transport equation and its application to resonant tunneling diodes. J. Comput. Phys. 284, 95–116 (2015)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Cervenka, J., Ellinghaus, P., Nedjalkov, M.: Deterministic solution of the discrete Wigner equation. In: Dimov, I., Fidanova, S., Lirkov, I. (eds.) Numerical Methods and Applications, pp. 149–156. Springer International Publishing, Berlin (2015) Cervenka, J., Ellinghaus, P., Nedjalkov, M.: Deterministic solution of the discrete Wigner equation. In: Dimov, I., Fidanova, S., Lirkov, I. (eds.) Numerical Methods and Applications, pp. 149–156. Springer International Publishing, Berlin (2015)
32.
Zurück zum Zitat Ellinghaus, P.: Two-dimensional Wigner Monte Carlo simulation for time-resolved quantum transport with scattering. Ph.D. dissertation, Technische Universität Wien (2016) Ellinghaus, P.: Two-dimensional Wigner Monte Carlo simulation for time-resolved quantum transport with scattering. Ph.D. dissertation, Technische Universität Wien (2016)
33.
Zurück zum Zitat Bertoni, A., Bordone, P., Brunetti, R., Jacoboni, C.: The Wigner function for electron transport in mesoscopic systems. J. Phys. Condens. Matter 11, 5999–6012 (1999)CrossRef Bertoni, A., Bordone, P., Brunetti, R., Jacoboni, C.: The Wigner function for electron transport in mesoscopic systems. J. Phys. Condens. Matter 11, 5999–6012 (1999)CrossRef
34.
Zurück zum Zitat Shifren, L., Ringhofer, C., Ferry, D.K.: A Wigner function-based quantum ensemble Monte Carlo study of a resonant tunneling diode. IEEE Trans. Electron Devices 50, 769–773 (2003)CrossRef Shifren, L., Ringhofer, C., Ferry, D.K.: A Wigner function-based quantum ensemble Monte Carlo study of a resonant tunneling diode. IEEE Trans. Electron Devices 50, 769–773 (2003)CrossRef
35.
Zurück zum Zitat Nedjalkov, M., Kosina, H., Selberherr, S., Ringhofer, C., Ferry, D.K.: Unified particle approach to Wigner-Boltzmann transport in small semiconductor devices. Phys. Rev. B 70, 115319 (2004)CrossRef Nedjalkov, M., Kosina, H., Selberherr, S., Ringhofer, C., Ferry, D.K.: Unified particle approach to Wigner-Boltzmann transport in small semiconductor devices. Phys. Rev. B 70, 115319 (2004)CrossRef
36.
Zurück zum Zitat Querlioz, D., Nguyen, H.-N., Saint-Martin, J., Bournel, A., Galdin-Retailleau, S., Dollfus, P.: Wigner-Boltzmann Monte Carlo approach to nanodevice simulation: from quantum to semiclassical transport. J. Comput. Electron. 8, 324–335 (2009)CrossRef Querlioz, D., Nguyen, H.-N., Saint-Martin, J., Bournel, A., Galdin-Retailleau, S., Dollfus, P.: Wigner-Boltzmann Monte Carlo approach to nanodevice simulation: from quantum to semiclassical transport. J. Comput. Electron. 8, 324–335 (2009)CrossRef
37.
Zurück zum Zitat Ellinghaus, P., Weinbub, J., Nedjalkov, M., Selberherr, S., Dimov, I.: Distributed-memory parallelization of the Wigner Monte Carlo method using spatial domain decomposition. J. Comput. Electron. 14, 151–162 (2015)CrossRef Ellinghaus, P., Weinbub, J., Nedjalkov, M., Selberherr, S., Dimov, I.: Distributed-memory parallelization of the Wigner Monte Carlo method using spatial domain decomposition. J. Comput. Electron. 14, 151–162 (2015)CrossRef
38.
Zurück zum Zitat Weinbub, J., Ellinghaus, P., Nedjalkov, M.: Domain decomposition strategies for the two-dimensional Wigner Monte Carlo method. J. Comput. Electron. 14, 922–929 (2015)CrossRef Weinbub, J., Ellinghaus, P., Nedjalkov, M.: Domain decomposition strategies for the two-dimensional Wigner Monte Carlo method. J. Comput. Electron. 14, 922–929 (2015)CrossRef
39.
Zurück zum Zitat Jacoboni, C., Bordone, P.: Wigner transport equation with finite coherence length. J. Comput. Electron. 13, 257–263 (2014) Jacoboni, C., Bordone, P.: Wigner transport equation with finite coherence length. J. Comput. Electron. 13, 257–263 (2014)
40.
Zurück zum Zitat Savio, A., Poncet, A.: Study of the boundary conditions of the Wigner function computed by solving the Schrödinger equation. Int. J. Adv. Syst. Meas. 3, 99–109 (2010) Savio, A., Poncet, A.: Study of the boundary conditions of the Wigner function computed by solving the Schrödinger equation. Int. J. Adv. Syst. Meas. 3, 99–109 (2010)
41.
Zurück zum Zitat Savio, A., Poncet, A.: Study of the Wigner function at the device boundaries in one-dimensional single- and double-barrier structures. J. Appl. Phys. 109, 033713 (2011)CrossRef Savio, A., Poncet, A.: Study of the Wigner function at the device boundaries in one-dimensional single- and double-barrier structures. J. Appl. Phys. 109, 033713 (2011)CrossRef
42.
Zurück zum Zitat Jiang, H., Lu, T., Cai, W.: A device adaptive inflow boundary condition for Wigner equations of quantum transport. J. Comput. Phys. 258, 773–786 (2014)MathSciNetCrossRefMATH Jiang, H., Lu, T., Cai, W.: A device adaptive inflow boundary condition for Wigner equations of quantum transport. J. Comput. Phys. 258, 773–786 (2014)MathSciNetCrossRefMATH
43.
Zurück zum Zitat Jonsson, B., Eng, S.T.: Solving the Schrödinger equation in arbitrary quantum-well potential profiles using the transfer matrix method. IEEE J. Quantum Electron. 26, 2025–2035 (1990)CrossRef Jonsson, B., Eng, S.T.: Solving the Schrödinger equation in arbitrary quantum-well potential profiles using the transfer matrix method. IEEE J. Quantum Electron. 26, 2025–2035 (1990)CrossRef
Metadaten
Titel
Accuracy balancing for the finite-difference-based solution of the discrete Wigner transport equation
verfasst von
Kyoung-Youm Kim
Saehwa Kim
Ting-wei Tang
Publikationsdatum
03.01.2017
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 1/2017
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-016-0944-9

Weitere Artikel der Ausgabe 1/2017

Journal of Computational Electronics 1/2017 Zur Ausgabe

Neuer Inhalt