Skip to main content

2020 | OriginalPaper | Buchkapitel

Accurate Numerical Modeling of Complex Thermal Processes: Impact of Professor Spalding’s Work

verfasst von : Yogesh Jaluria

Erschienen in: 50 Years of CFD in Engineering Sciences

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Practical thermal processes and systems, in application areas such as energy, manufacturing, environmental control, heating/cooling, thermal management of electronics, and transportation, generally involve combined transport mechanisms and many different complex phenomena. The materials of interest are also frequently difficult to characterize, and their properties could involve large changes with temperature, concentration, and pressure. The boundary conditions are often unknown or not well defined. The configuration and the geometry are frequently quite complicated. However, in order to study, predict, design, and optimize most practical thermal processes, it is important to obtain accurate and realistic numerical results from the simulation. The mathematical and numerical models must be verified and validated to establish the accuracy and reliability of the simulation results if these are to be used for improving existing systems and developing new ones. This paper focuses on the main considerations that arise and approaches that may be adopted to obtain accurate numerical simulation results on practical thermal processes and systems. A wide range of systems is considered, including those involved in materials processing, energy, heat removal, and safety. Verification and validation, imposition of realistic boundary conditions, modeling of complex, multimode, transport phenomena, multiscale modeling, and time dependence of the processes are discussed. Additional aspects such as viscous dissipation, surface tension, buoyancy, and rarefaction that arise in several systems are also considered. Uncertainties that arise in material properties and in boundary conditions are also important in design and optimization. The methodology to treat these is outlined. Large variations in the geometry and coupled multiple regions are also of interest. The methods that may be used to address these issues are discussed, along with typical results for a range of important processes. Future needs in this interesting and important area are also presented. In many of these studies, the work done by Professor Spalding and his research group has been particularly valuable, since it has guided many of the simplifications and approaches that have been adopted. This paper is a brief tribute to the extraordinary contributions of Professor Spalding to the field of computational fluid dynamics and heat transfer.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jaluria, Y. (2003). Thermal processing of materials: From basic research to engineering. ASME Journal of Heat Transfer, 125, 957–979.CrossRef Jaluria, Y. (2003). Thermal processing of materials: From basic research to engineering. ASME Journal of Heat Transfer, 125, 957–979.CrossRef
2.
Zurück zum Zitat Jaluria, Y. (2008). Design and Optimization of Thermal Systems (2nd ed.). Boca Raton, FL: CRC Press.MATH Jaluria, Y. (2008). Design and Optimization of Thermal Systems (2nd ed.). Boca Raton, FL: CRC Press.MATH
3.
Zurück zum Zitat Bejan, A., Tsatsaronis, G., & Moran, M. (1996). Thermal design and optimization. New York: Wiley.MATH Bejan, A., Tsatsaronis, G., & Moran, M. (1996). Thermal design and optimization. New York: Wiley.MATH
4.
Zurück zum Zitat Paek, U. C. (1999). Free drawing and polymer coating of silica glass optical fibers. ASME Journal of Heat transfer, 121, 774–788.CrossRef Paek, U. C. (1999). Free drawing and polymer coating of silica glass optical fibers. ASME Journal of Heat transfer, 121, 774–788.CrossRef
5.
Zurück zum Zitat Zhang, J., & Jaluria, Y. (2017). Steady and transient behavior of data centers with variations in thermal load and environmental conditions. International Journal of Heat and Mass Transfer, 108, 374–385.CrossRef Zhang, J., & Jaluria, Y. (2017). Steady and transient behavior of data centers with variations in thermal load and environmental conditions. International Journal of Heat and Mass Transfer, 108, 374–385.CrossRef
6.
Zurück zum Zitat Mahajan, R. L. (1996). Transport phenomena in chemical vapor-deposition systems. Advances in Heat Transfer, 28, 339–425.CrossRef Mahajan, R. L. (1996). Transport phenomena in chemical vapor-deposition systems. Advances in Heat Transfer, 28, 339–425.CrossRef
7.
Zurück zum Zitat Gad-el-Hak, M. (1999). The fluid mechanics of microdevices—The Freeman scholar lecture. Journal of Fluids Engineering, 121, 5–33.CrossRef Gad-el-Hak, M. (1999). The fluid mechanics of microdevices—The Freeman scholar lecture. Journal of Fluids Engineering, 121, 5–33.CrossRef
8.
Zurück zum Zitat Sun, Z., & Jaluria, Y. (2010). Unsteady two-dimensional nitrogen flow in long microchannels with uniform wall heat flux,”. Numerical Heat Transfer, 57, 625–641.CrossRef Sun, Z., & Jaluria, Y. (2010). Unsteady two-dimensional nitrogen flow in long microchannels with uniform wall heat flux,”. Numerical Heat Transfer, 57, 625–641.CrossRef
9.
Zurück zum Zitat Eversteyn, F. C., Severin, P. J. W., Brekel, C. H. J., & Peek, H. L. (1970). A stagnant layer model for the epitaxial growth of silicon from silane in a horizontal reactor. Journal of the Electrochemical Society, 117, 925–931.CrossRef Eversteyn, F. C., Severin, P. J. W., Brekel, C. H. J., & Peek, H. L. (1970). A stagnant layer model for the epitaxial growth of silicon from silane in a horizontal reactor. Journal of the Electrochemical Society, 117, 925–931.CrossRef
10.
Zurück zum Zitat Chen, C., & Jaluria, Y. (2009). Effects of doping on the optical fiber drawing process. International Journal of Heat and Mass Transfer, 52, 4812–4822.CrossRef Chen, C., & Jaluria, Y. (2009). Effects of doping on the optical fiber drawing process. International Journal of Heat and Mass Transfer, 52, 4812–4822.CrossRef
11.
Zurück zum Zitat Izawa, T., & Sudo, S. (1987). Optical fibers: Materials and fabrication. Tokyo: KTK Scientific Publishers. Izawa, T., & Sudo, S. (1987). Optical fibers: Materials and fabrication. Tokyo: KTK Scientific Publishers.
12.
Zurück zum Zitat Skelland, A. H. O. (1967). Non-Newtonian flow and heat transfer. New York: Wiley. Skelland, A. H. O. (1967). Non-Newtonian flow and heat transfer. New York: Wiley.
13.
Zurück zum Zitat Tadmor, Z., & Gogos, C. (1979). Principles of polymer processing. New York: Wiley. Tadmor, Z., & Gogos, C. (1979). Principles of polymer processing. New York: Wiley.
14.
Zurück zum Zitat Kokini, J. L., Ho, C.-T., & Karwe, M. V. (Eds.). (1992). Food extrusion science and technology. New York: Marcel Dekker. Kokini, J. L., Ho, C.-T., & Karwe, M. V. (Eds.). (1992). Food extrusion science and technology. New York: Marcel Dekker.
15.
Zurück zum Zitat Patankar, S. V., & Spalding, D. B. (1970). Heat and mass transfer in boundary layers (2nd ed.). Intertext: Taylor & Francis, Oxfordshire, UK. Patankar, S. V., & Spalding, D. B. (1970). Heat and mass transfer in boundary layers (2nd ed.). Intertext: Taylor & Francis, Oxfordshire, UK.
16.
Zurück zum Zitat Roache, P. J. (1998). Verification and validation in computational science and engineering. Albuquerque, New Mexico: Hermosa Publishers. Roache, P. J. (1998). Verification and validation in computational science and engineering. Albuquerque, New Mexico: Hermosa Publishers.
17.
Zurück zum Zitat Jaluria, Y. (1996). Heat and mass transfer in the extrusion of non-newtonian materials. Advances in Heat Transfer, 28, 145–230.CrossRef Jaluria, Y. (1996). Heat and mass transfer in the extrusion of non-newtonian materials. Advances in Heat Transfer, 28, 145–230.CrossRef
18.
Zurück zum Zitat Yoo, S. Y., & Jaluria, Y. (2008). Numerical simulation of the meniscus in the non-isothermal free surface flow at the exit of a coating die. Numerical Heat Transfer, 53A, 111–131. Yoo, S. Y., & Jaluria, Y. (2008). Numerical simulation of the meniscus in the non-isothermal free surface flow at the exit of a coating die. Numerical Heat Transfer, 53A, 111–131.
19.
Zurück zum Zitat Jaluria, Y. (2018). Advanced materials processing and manufacturing. Cham, Switzerland: Springer.CrossRef Jaluria, Y. (2018). Advanced materials processing and manufacturing. Cham, Switzerland: Springer.CrossRef
20.
Zurück zum Zitat Viswanath, R., & Jaluria, Y. (1995). Numerical study of conjugate transient solidification in an enclosed region. Numerical Heat Transfer, 27, 519–536.CrossRef Viswanath, R., & Jaluria, Y. (1995). Numerical study of conjugate transient solidification in an enclosed region. Numerical Heat Transfer, 27, 519–536.CrossRef
21.
Zurück zum Zitat Papanicolaou, E., & Jaluria, Y. (1993). Mixed convection from a localized heat source in a cavity with conducting walls: A numerical study. Numerical Heat Transfer, 23, 463–484.CrossRef Papanicolaou, E., & Jaluria, Y. (1993). Mixed convection from a localized heat source in a cavity with conducting walls: A numerical study. Numerical Heat Transfer, 23, 463–484.CrossRef
22.
Zurück zum Zitat Issa, J., Yin, Z., Polymeropoulos, C. E., & Jaluria, Y. (1996). Temperature distribution in an optical fiber draw tower furnace. Journal of Materials Processing and Manufacturing Science, 4, 221–232. Issa, J., Yin, Z., Polymeropoulos, C. E., & Jaluria, Y. (1996). Temperature distribution in an optical fiber draw tower furnace. Journal of Materials Processing and Manufacturing Science, 4, 221–232.
23.
Zurück zum Zitat Gosman, A. D., Pun, W. M., Spalding, D. B., & Wolfshtein, M. (1969). Heat and mass transfer in recirculating flows. New York: Academic Press.MATH Gosman, A. D., Pun, W. M., Spalding, D. B., & Wolfshtein, M. (1969). Heat and mass transfer in recirculating flows. New York: Academic Press.MATH
24.
Zurück zum Zitat Abib, A., & Jaluria, Y. (1988). Numerical simulation of the buoyancy-induced flow in a partially open enclosure. Numerical Heat Transfer, 14, 235–254.CrossRef Abib, A., & Jaluria, Y. (1988). Numerical simulation of the buoyancy-induced flow in a partially open enclosure. Numerical Heat Transfer, 14, 235–254.CrossRef
25.
Zurück zum Zitat Fitt, A. D., Furusawa, K., Monro, T. M., & Please, C. P. (2001). Modeling the fabrication of hollow fibers: Capillary drawing. Journal of Lightwave Technology, 19, 1924–1931. Fitt, A. D., Furusawa, K., Monro, T. M., & Please, C. P. (2001). Modeling the fabrication of hollow fibers: Capillary drawing. Journal of Lightwave Technology, 19, 1924–1931.
26.
Zurück zum Zitat Jaluria, Y. (2009). Microscale transport phenomena in materials processing. ASME Journal of Heat Transfer, 131, 033111-1–17. Jaluria, Y. (2009). Microscale transport phenomena in materials processing. ASME Journal of Heat Transfer, 131, 033111-1–17.
27.
Zurück zum Zitat Hanafusa, H., Hibino, Y., & Yamamoto, F. (1985). Formation mechanism of drawing-induced E′ centers in silica optical fibers. Journal of Applied Physics, 58(3), 1356–1361.CrossRef Hanafusa, H., Hibino, Y., & Yamamoto, F. (1985). Formation mechanism of drawing-induced E′ centers in silica optical fibers. Journal of Applied Physics, 58(3), 1356–1361.CrossRef
28.
Zurück zum Zitat Wang, S. S., Chiang, C. C., Yeh, A. I., Zhao, B., & Kim, I. H. (1989). Kinetics of phase transition of waxy corn starch at extrusion temperatures and moisture contents. Journal of Food Science, 54, 1298–1301.CrossRef Wang, S. S., Chiang, C. C., Yeh, A. I., Zhao, B., & Kim, I. H. (1989). Kinetics of phase transition of waxy corn starch at extrusion temperatures and moisture contents. Journal of Food Science, 54, 1298–1301.CrossRef
29.
Zurück zum Zitat Gebhart, B., Hilder, D. S., & Kelleher, M. (1984). The diffusion of turbulent jets. Advances in Heat Transfer, 16, 1–57.CrossRef Gebhart, B., Hilder, D. S., & Kelleher, M. (1984). The diffusion of turbulent jets. Advances in Heat Transfer, 16, 1–57.CrossRef
30.
Zurück zum Zitat Deb, K. (2002). Multi-objective optimization using evolutionary algorithms. New York, NY: Wiley.MATH Deb, K. (2002). Multi-objective optimization using evolutionary algorithms. New York, NY: Wiley.MATH
31.
Zurück zum Zitat Lin, P. T., Gea, H. C., & Jaluria, Y. (2009). Parametric modeling and optimization of chemical vapor deposition process. Journal of Manufacturing Science and Engineering, 131, 011011-1–7. Lin, P. T., Gea, H. C., & Jaluria, Y. (2009). Parametric modeling and optimization of chemical vapor deposition process. Journal of Manufacturing Science and Engineering, 131, 011011-1–7.
32.
Zurück zum Zitat Miettinen, K. M. (1999). Nonlinear multi-objective optimization. Boston, MA: Kluwer Acad. Press. Miettinen, K. M. (1999). Nonlinear multi-objective optimization. Boston, MA: Kluwer Acad. Press.
33.
Zurück zum Zitat Ringuest, J. L. (1992). Multiobjective optimization: Behavioral and computational considerations. Boston, MA: Kluwer Acad. Press.CrossRef Ringuest, J. L. (1992). Multiobjective optimization: Behavioral and computational considerations. Boston, MA: Kluwer Acad. Press.CrossRef
34.
Zurück zum Zitat Zhao, H., Icoz, T., Jaluria, Y., & Knight, D. (2007). Application of data driven design optimization methodology to a multi-objective design optimization problem. Journal of Engineering, 18, 343–359.CrossRef Zhao, H., Icoz, T., Jaluria, Y., & Knight, D. (2007). Application of data driven design optimization methodology to a multi-objective design optimization problem. Journal of Engineering, 18, 343–359.CrossRef
35.
Zurück zum Zitat Lin, P. T., Gea, H. C., & Jaluria, Y. (2010). Systematic strategy for modeling and optimization of thermal systems with design uncertainties. Frontiers Heat Mass Transfer, 1(013003), 1–20. Lin, P. T., Gea, H. C., & Jaluria, Y. (2010). Systematic strategy for modeling and optimization of thermal systems with design uncertainties. Frontiers Heat Mass Transfer, 1(013003), 1–20.
36.
Zurück zum Zitat Tu, J., Cho, J., & Park, Y. H. (1999). A new study on reliability-based design optimization. Journal of Mechanical Design, 121, 557–564.CrossRef Tu, J., Cho, J., & Park, Y. H. (1999). A new study on reliability-based design optimization. Journal of Mechanical Design, 121, 557–564.CrossRef
37.
Zurück zum Zitat Youn, B. D., & Choi, K. K. (2004). An investigation of nonlinearity of reliability-based design optimization approaches. Journal of Mechanical Design, 126, 403–411.CrossRef Youn, B. D., & Choi, K. K. (2004). An investigation of nonlinearity of reliability-based design optimization approaches. Journal of Mechanical Design, 126, 403–411.CrossRef
38.
Zurück zum Zitat Spalding, D. B. (1977). Genmix: A general computer program for two-dimensional parabolic phenomena. Oxford, UK: Pergamon Press. Spalding, D. B. (1977). Genmix: A general computer program for two-dimensional parabolic phenomena. Oxford, UK: Pergamon Press.
39.
Zurück zum Zitat Patankar, S. V. (1980). Numerical heat transfer and fluid flow. Boca Raton, FL: CRC Press.MATH Patankar, S. V. (1980). Numerical heat transfer and fluid flow. Boca Raton, FL: CRC Press.MATH
Metadaten
Titel
Accurate Numerical Modeling of Complex Thermal Processes: Impact of Professor Spalding’s Work
verfasst von
Yogesh Jaluria
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-2670-1_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.