Skip to main content

2021 | OriginalPaper | Buchkapitel

2. Acoustic Wave Propagation in an Elliptical Cylindrical Waveguide

verfasst von : Akhilesh Mimani, PhD

Erschienen in: Acoustic Analysis and Design of Short Elliptical End-Chamber Mufflers

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter begins with the three-dimensional (3-D) Helmholtz equation governing acoustic wave propagation in an infinite rigid-wall elliptical cylindrical waveguide carrying a uniform mean flow. The 3-D acoustic pressure field is obtained as modal summation of rigid-wall transverse modes in terms of the angular and radial Mathieu functions and complex exponentials. A well-known algorithm is presented for computing the expansion coefficients of even and odd angular Mathieu functions based on a set of infinite recurrence relations formulated as an algebraic eigenvalue problem. The modified or radial Mathieu functions are computed using a rapidly converging series of products of Bessel function. Rigid-wall condition is imposed at the elliptical boundaries by setting the derivative of modified Mathieu functions to zero, and root-bracketing in conjunction with the bisection method is used to numerically compute its parametric zeros q. The corresponding non-dimensional resonance frequencies of the transverse (rigid-wall) radial, even and odd circumferential/cross-modes of the elliptical waveguide are tabulated for aspect-ratios ranging from \(D_{2} /D_{1} = 0.01\,{\text{to}}\,1.0\). The tables show that for a highly eccentric ellipse, i.e., \(e \to 1\) (small aspect-ratio), the resonance frequencies of the even modes are significantly smaller than those of its odd counterpart. With an increase in aspect-ratio, the resonance frequencies of odd modes gradually approach those of the even modes, and for ellipse with \(e \to 0{\text{ or }}D_{2} /D_{1} \to 1\) the even and odd modes coalesce to the circular duct mode. The mode shapes corresponding to the first few radial, even and odd modes are presented for a few aspect-ratios whereby one can visualize changes in modal pressure distribution as the ellipse approaches a circle. Development of interpolation polynomials which facilitates an easy evaluation of the resonance frequencies for a given mode type is a useful outcome in engineering acoustics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat E. Mathieu, Memoire sur le movement vibratoire d’une membrane de forme elliptique. J. Math. Pures Appl. 13, 137 (1868)MATH E. Mathieu, Memoire sur le movement vibratoire d’une membrane de forme elliptique. J. Math. Pures Appl. 13, 137 (1868)MATH
2.
Zurück zum Zitat E. Heine, Handbuch der Kugelfunktionen, 2 Vols. (1878/1881) E. Heine, Handbuch der Kugelfunktionen, 2 Vols. (1878/1881)
3.
Zurück zum Zitat G. Floquet, Sur les equations differentielles lineaires. Ann. De l’Ecole Normale Superieure 12, 47 (1883)CrossRef G. Floquet, Sur les equations differentielles lineaires. Ann. De l’Ecole Normale Superieure 12, 47 (1883)CrossRef
5.
Zurück zum Zitat N.W. McLachlan, Theory and Application of Mathieu Functions (Oxford University Press, London, 1947).MATH N.W. McLachlan, Theory and Application of Mathieu Functions (Oxford University Press, London, 1947).MATH
6.
Zurück zum Zitat J. Meixner, F.W. Schäfke, Mathieusche Funktionen Und Sphäroidfunktionen (Springer-Verlag, Berlin, 1954).CrossRef J. Meixner, F.W. Schäfke, Mathieusche Funktionen Und Sphäroidfunktionen (Springer-Verlag, Berlin, 1954).CrossRef
7.
Zurück zum Zitat M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (National Bureau of Standards, Washington, DC, 1972).MATH M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (National Bureau of Standards, Washington, DC, 1972).MATH
8.
Zurück zum Zitat E.L. Ince, Researches into the characteristic numbers of the mathieu equation. Proc. Roy. Soc. Edim. 46, 20–29 (1926)MATH E.L. Ince, Researches into the characteristic numbers of the mathieu equation. Proc. Roy. Soc. Edim. 46, 20–29 (1926)MATH
9.
10.
Zurück zum Zitat S. Goldstein, On the asymptotic expansion of the characteristic number of the Mathieu equation. Proc. Roy. Soc. Edim. 49, 203–223 (1929) S. Goldstein, On the asymptotic expansion of the characteristic number of the Mathieu equation. Proc. Roy. Soc. Edim. 49, 203–223 (1929)
11.
Zurück zum Zitat J. Canosa, Numerical solution of Mathieu’s equation. J. Comput. Phys. 7, 255–272 (1971)CrossRef J. Canosa, Numerical solution of Mathieu’s equation. J. Comput. Phys. 7, 255–272 (1971)CrossRef
12.
Zurück zum Zitat D. Frenkel, R. Portugal, Algebraic methods to compute Mathieu functions. J. Phys. Math Gen 34, 3541–3551 (2001)MathSciNetCrossRef D. Frenkel, R. Portugal, Algebraic methods to compute Mathieu functions. J. Phys. Math Gen 34, 3541–3551 (2001)MathSciNetCrossRef
13.
Zurück zum Zitat F.A. Alhargan, A complete method for the computations of Mathieu characteristic numbers of integer orders. SIAM Rev. 38, 239–255 (1996)MathSciNetCrossRef F.A. Alhargan, A complete method for the computations of Mathieu characteristic numbers of integer orders. SIAM Rev. 38, 239–255 (1996)MathSciNetCrossRef
14.
Zurück zum Zitat F.A. Alhargan, Algorithms for the computation of all Mathieu functions of integer orders. ACM Trans. Math. Software 26, 390–407 (2000)CrossRef F.A. Alhargan, Algorithms for the computation of all Mathieu functions of integer orders. ACM Trans. Math. Software 26, 390–407 (2000)CrossRef
15.
Zurück zum Zitat F.A. Alhargan, Algorithm 804: subroutines for the computation of Mathieu functions of integer orders. ACM Trans. Math. Softw. 26, 408–414 (2000)CrossRef F.A. Alhargan, Algorithm 804: subroutines for the computation of Mathieu functions of integer orders. ACM Trans. Math. Softw. 26, 408–414 (2000)CrossRef
16.
Zurück zum Zitat D. Clemm, Algorithm 352 Characteristic values and associated solutions of Mathieu’s differential equation. Comm. ACM 12, 399–408 (1969)CrossRef D. Clemm, Algorithm 352 Characteristic values and associated solutions of Mathieu’s differential equation. Comm. ACM 12, 399–408 (1969)CrossRef
17.
Zurück zum Zitat S.R. Rengarajan, J.E. Lewis, Mathieu functions of integral order and real arguments. IEEE Trans. Microw. Theory and Tech. MTT 28, 276–277 (1980) S.R. Rengarajan, J.E. Lewis, Mathieu functions of integral order and real arguments. IEEE Trans. Microw. Theory and Tech. MTT 28, 276–277 (1980)
18.
Zurück zum Zitat N. Toyama, K. Shogen, Computation of the value of the even and odd Mathieu functions of order n for a given parameter s and an argument x. IEEE T. Antenn. Propag. AP 32, 537–539 (1994) N. Toyama, K. Shogen, Computation of the value of the even and odd Mathieu functions of order n for a given parameter s and an argument x. IEEE T. Antenn. Propag. AP 32, 537–539 (1994)
19.
Zurück zum Zitat W. Leeb, Algorithm 537 Characteristic values of Mathieu’s differential equation. ACM Trans. Math. Soft. 5, 112–117 (1979)CrossRef W. Leeb, Algorithm 537 Characteristic values of Mathieu’s differential equation. ACM Trans. Math. Soft. 5, 112–117 (1979)CrossRef
20.
Zurück zum Zitat R.B. Shirts, Algorithm 721 MTIEU1 and MTIEU2: Two subroutines to compute eigenvalues and solutions to Mathieu’s differential equation for non-integer and integer order. ACM Trans. Math. Soft. 19, 391–406 (1993)CrossRef R.B. Shirts, Algorithm 721 MTIEU1 and MTIEU2: Two subroutines to compute eigenvalues and solutions to Mathieu’s differential equation for non-integer and integer order. ACM Trans. Math. Soft. 19, 391–406 (1993)CrossRef
21.
Zurück zum Zitat J.J. Stamnes, B. Spjelkavik, New method for computing eigenfunctions (Mathieu functions) for scattering by elliptical cylinders. Pure Appl. Opt. 4, 251–262 (1995)CrossRef J.J. Stamnes, B. Spjelkavik, New method for computing eigenfunctions (Mathieu functions) for scattering by elliptical cylinders. Pure Appl. Opt. 4, 251–262 (1995)CrossRef
22.
Zurück zum Zitat S. Zhang, J. Jin, Computation of Special Functions (Wiley, New York, 1996). S. Zhang, J. Jin, Computation of Special Functions (Wiley, New York, 1996).
23.
Zurück zum Zitat C. Julio, Gutiérrez-Vega, Formal Analysis of the Propagation of Invariant Optical Fields in Elliptic Coordinates, Ph. D. Thesis, INAOE, México (20000 C. Julio, Gutiérrez-Vega, Formal Analysis of the Propagation of Invariant Optical Fields in Elliptic Coordinates, Ph. D. Thesis, INAOE, México (20000
25.
26.
Zurück zum Zitat G. Chen, P.J. Morris, J. Zhou, Visualization of special eigenmode shapes of a vibrating elliptical membrane. SIAM Rev. 36, 453–469 (1994)MathSciNetCrossRef G. Chen, P.J. Morris, J. Zhou, Visualization of special eigenmode shapes of a vibrating elliptical membrane. SIAM Rev. 36, 453–469 (1994)MathSciNetCrossRef
27.
Zurück zum Zitat J.B. Keller, S.I. Rubinow, Asymptotic solution of eigenvalue problems. Ann. Phys. 9, 24–75 (1960)CrossRef J.B. Keller, S.I. Rubinow, Asymptotic solution of eigenvalue problems. Ann. Phys. 9, 24–75 (1960)CrossRef
28.
Zurück zum Zitat J.C. Gutiérrez-Vega, R.M. Rodríguez-Dagnino, M.A. Meneses-Nava, S. Chávez-Cerda, Mathieu functions, a visual approach. Am. J. Phys. 71, 233–242 (2003)CrossRef J.C. Gutiérrez-Vega, R.M. Rodríguez-Dagnino, M.A. Meneses-Nava, S. Chávez-Cerda, Mathieu functions, a visual approach. Am. J. Phys. 71, 233–242 (2003)CrossRef
29.
Zurück zum Zitat S. Ancey, A. Folacci, P. Gabrielli, Whispering-gallery modes and resonances of an elliptic cavity. J. Phys. A Math. Gen. 34, 1341–1359 (2001)MathSciNetCrossRef S. Ancey, A. Folacci, P. Gabrielli, Whispering-gallery modes and resonances of an elliptic cavity. J. Phys. A Math. Gen. 34, 1341–1359 (2001)MathSciNetCrossRef
30.
Zurück zum Zitat L.D. Akulenko, S.V. Nesterov, Free vibrations of a homogeneous elliptic membrane. Mech. Solids 35, 153–162 (2000) L.D. Akulenko, S.V. Nesterov, Free vibrations of a homogeneous elliptic membrane. Mech. Solids 35, 153–162 (2000)
31.
Zurück zum Zitat H.B. Wilson, R.W. Scharstein, Computing elliptic membrane high frequencies by Mathieu and Galerkin methods. J. Eng. Math. 57, 41–55 (2007)MathSciNetCrossRef H.B. Wilson, R.W. Scharstein, Computing elliptic membrane high frequencies by Mathieu and Galerkin methods. J. Eng. Math. 57, 41–55 (2007)MathSciNetCrossRef
32.
Zurück zum Zitat L.J. Chu, Electromagnetic waves in elliptic hollow metal pipes of metal. J. Appl. Phys. 9, 583–591 (1938)CrossRef L.J. Chu, Electromagnetic waves in elliptic hollow metal pipes of metal. J. Appl. Phys. 9, 583–591 (1938)CrossRef
33.
Zurück zum Zitat S.D. Daymond, The principal frequencies of vibrating systems with elliptic boundaries. J. Mech. Appl. Math. VIII, 361–372 (1955) S.D. Daymond, The principal frequencies of vibrating systems with elliptic boundaries. J. Mech. Appl. Math. VIII, 361–372 (1955)
34.
Zurück zum Zitat J.G. Kretzschmar: Wave propagation in hollow conducting elliptical waveguides. IEEE Trans. Microw. Theory MTT 18 (1970) J.G. Kretzschmar: Wave propagation in hollow conducting elliptical waveguides. IEEE Trans. Microw. Theory MTT 18 (1970)
35.
Zurück zum Zitat M.V. Lowson, S. Baskaran, Propagation of sound in elliptic ducts. J. Sound Vib. 38, 185–194 (1975)CrossRef M.V. Lowson, S. Baskaran, Propagation of sound in elliptic ducts. J. Sound Vib. 38, 185–194 (1975)CrossRef
36.
Zurück zum Zitat F.D. Denia, J. Albelda, F.J. Fuenmayor, A.J. Torregrosa, Acoustic behaviour of elliptical chamber mufflers. J. Sound Vib. 241, 401–421 (2001) F.D. Denia, J. Albelda, F.J. Fuenmayor, A.J. Torregrosa, Acoustic behaviour of elliptical chamber mufflers. J. Sound Vib. 241, 401–421 (2001)
37.
Zurück zum Zitat A. Mimani, M.L. Munjal, 3-D acoustic analysis of elliptical chamber mufflers having an end inlet and a side outlet: an impedance matrix approach. Wave Motion 49, 271–295 (2012)MathSciNetCrossRef A. Mimani, M.L. Munjal, 3-D acoustic analysis of elliptical chamber mufflers having an end inlet and a side outlet: an impedance matrix approach. Wave Motion 49, 271–295 (2012)MathSciNetCrossRef
38.
Zurück zum Zitat A. Mimani, M.L. Munjal, Acoustic end-correction in a flow-reversal end chamber muffler: a semi-analytical approach. J. Comput. Acoust. 24, 1650004 (2016)MathSciNetCrossRef A. Mimani, M.L. Munjal, Acoustic end-correction in a flow-reversal end chamber muffler: a semi-analytical approach. J. Comput. Acoust. 24, 1650004 (2016)MathSciNetCrossRef
39.
Zurück zum Zitat K. Hong, J. Kim, Natural mode analysis of hollow and annular elliptical cylindrical cavities. J. Sound Vib. 183, 327–351 (1995)CrossRef K. Hong, J. Kim, Natural mode analysis of hollow and annular elliptical cylindrical cavities. J. Sound Vib. 183, 327–351 (1995)CrossRef
40.
Zurück zum Zitat W.M. Lee., Acoustic eigenproblems of elliptical cylindrical cavities with multiple elliptical cylinders by using the collocation multipole method. Int. J. Mech. Sci. 78, 203–214 (2014) W.M. Lee., Acoustic eigenproblems of elliptical cylindrical cavities with multiple elliptical cylinders by using the collocation multipole method. Int. J. Mech. Sci. 78, 203–214 (2014)
41.
Zurück zum Zitat M.L. Munjal, Acoustics of Ducts and Mufflers , 2nd edn. (Wiley, Chichester, UK, 2014). M.L. Munjal, Acoustics of Ducts and Mufflers , 2nd edn. (Wiley, Chichester, UK, 2014).
42.
Zurück zum Zitat D.T. Blackstock, Fundamentals of Physical Acoustics, Chap. 3 (John Wiley, New York, 2000) D.T. Blackstock, Fundamentals of Physical Acoustics, Chap. 3 (John Wiley, New York, 2000)
43.
Zurück zum Zitat J.M.G.S. Oliveira, P.J.S. Gil, Sound propagation in acoustically lined elliptical ducts. J. Sound Vib. 333, 3743–3758 (2014)CrossRef J.M.G.S. Oliveira, P.J.S. Gil, Sound propagation in acoustically lined elliptical ducts. J. Sound Vib. 333, 3743–3758 (2014)CrossRef
44.
Zurück zum Zitat M. Willatzen, L.C.L. Yan Voon, Flow-acoustic properties of elliptical-cylinder waveguides and enclosures. J. Phys. Conf. Ser. 52, 1–13 (2006) M. Willatzen, L.C.L. Yan Voon, Flow-acoustic properties of elliptical-cylinder waveguides and enclosures. J. Phys. Conf. Ser. 52, 1–13 (2006)
45.
Zurück zum Zitat G.B. Arfken, H.J. Weber, Mathematical Methods for Physicists (Academic Press Elsevier, London, 2005), pp. 869–879MATH G.B. Arfken, H.J. Weber, Mathematical Methods for Physicists (Academic Press Elsevier, London, 2005), pp. 869–879MATH
46.
Zurück zum Zitat E. Kreyszig, Advanced Engineering Mathematics, 10th edn. (John Wiley & Sons, New Jersey, USA, 2011).MATH E. Kreyszig, Advanced Engineering Mathematics, 10th edn. (John Wiley & Sons, New Jersey, USA, 2011).MATH
47.
Zurück zum Zitat A. Sarkar, V.R. Sonti, Wave equations and solutions of in-vacuo and fluid-filled elliptical cylindrical shells. Int. J. Acoust. Vib. 14, 35–45 (2009) A. Sarkar, V.R. Sonti, Wave equations and solutions of in-vacuo and fluid-filled elliptical cylindrical shells. Int. J. Acoust. Vib. 14, 35–45 (2009)
48.
Zurück zum Zitat S.W. Rienstra, B.J. Tester, An analytic Green’s function for a lined circular duct containing uniform mean flow. J. Sound Vib. 317, 994–1016 (2008)CrossRef S.W. Rienstra, B.J. Tester, An analytic Green’s function for a lined circular duct containing uniform mean flow. J. Sound Vib. 317, 994–1016 (2008)CrossRef
Metadaten
Titel
Acoustic Wave Propagation in an Elliptical Cylindrical Waveguide
verfasst von
Akhilesh Mimani, PhD
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-4828-9_2

    Premium Partner