Skip to main content
main-content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

Erschienen in:
Buchtitelbild

2018 | OriginalPaper | Buchkapitel

1. Adaptive and Multilevel Metaheuristics

verfasst von: Marc Sevaux, Kenneth Sörensen, Nelishia Pillay

Erschienen in: Handbook of Heuristics

Verlag: Springer International Publishing

share
TEILEN

Abstract

For the last decades, metaheuristics have become ever more popular as a tool to solve a large class of difficult optimization problems. However, determining the best configuration of a metaheuristic, which includes the program flow and the parameter settings, remains a difficult task. Adaptive metaheuristics (that change their configuration during the search) and multilevel metaheuristics (that change their configuration during the search by means of a metaheuristic) can be a solution for this. This chapter intends to make a quick review of the latest trends in adaptive metaheuristics and in multilevel metaheuristics.
Literatur
2.
Zurück zum Zitat Battiti R (1996) Reactive search: toward self-tuning heuristics. In: Modern heuristic search methods. Wiley, Chichester, pp 61–83 Battiti R (1996) Reactive search: toward self-tuning heuristics. In: Modern heuristic search methods. Wiley, Chichester, pp 61–83
6.
Zurück zum Zitat Burke EK, Kendall G, Newall J, Hart E, Ross P, Schulenburg S (2003) Hyper-heuristics: an emerging direction in modern search technology. In: Glover F, Kochenberger GA (eds) Handbook of metaheuristics. International series in operations research & management science, vol 57. Springer, pp 457–474. https://​doi.​org/​10.​1007/​0-306-48056-5_​16 Burke EK, Kendall G, Newall J, Hart E, Ross P, Schulenburg S (2003) Hyper-heuristics: an emerging direction in modern search technology. In: Glover F, Kochenberger GA (eds) Handbook of metaheuristics. International series in operations research & management science, vol 57. Springer, pp 457–474. https://​doi.​org/​10.​1007/​0-306-48056-5_​16
14.
Zurück zum Zitat Dobslaw F (2010) A parameter tuning framework for metaheuristics based on design of experiments and artificial neural networks. In: Proceedings of the international conference on computer mathematics and natural computing 2010. WASET Dobslaw F (2010) A parameter tuning framework for metaheuristics based on design of experiments and artificial neural networks. In: Proceedings of the international conference on computer mathematics and natural computing 2010. WASET
18.
Zurück zum Zitat Hong L, Woodward J, Li J, Ozcan E (2013) Automated design of probability distributions as mutation operators for evolutionary programming using genetic programming. In: Proceedings of the 16th European conference on genetic programming – EuroGP 2013, vol 7831, pp 85–96 Hong L, Woodward J, Li J, Ozcan E (2013) Automated design of probability distributions as mutation operators for evolutionary programming using genetic programming. In: Proceedings of the 16th European conference on genetic programming – EuroGP 2013, vol 7831, pp 85–96
30.
Zurück zum Zitat Sevaux M, Thomin P (2001) Heuristics and metaheuristics for parallel machine scheduling: a computational evaluation. In: Proceedings of 4th metaheuristics international conference, MIC 2001, Porto, pp 411–415 Sevaux M, Thomin P (2001) Heuristics and metaheuristics for parallel machine scheduling: a computational evaluation. In: Proceedings of 4th metaheuristics international conference, MIC 2001, Porto, pp 411–415
32.
Zurück zum Zitat Talbi E-G (2009) Metaheuristics: from design to implementation. Wiley & Sons, Hoboken. ISBN:978-0-470-27858-1 Talbi E-G (2009) Metaheuristics: from design to implementation. Wiley & Sons, Hoboken. ISBN:978-0-470-27858-1
Metadaten
Titel
Adaptive and Multilevel Metaheuristics
verfasst von
Marc Sevaux
Kenneth Sörensen
Nelishia Pillay
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-07124-4_16

Premium Partner