Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

27.02.2019 | Ausgabe 1/2021

Natural Computing 1/2021

Adaptive CCR-ELM with variable-length brain storm optimization algorithm for class-imbalance learning

Zeitschrift:
Natural Computing > Ausgabe 1/2021
Autoren:
Jian Cheng, Jingjing Chen, Yi-nan Guo, Shi Cheng, Linkai Yang, Pei Zhang
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Class-specific cost regulation extreme learning machine (CCR-ELM) can effectively deal with the class imbalance problems. However, its key parameters, including the number of hidden nodes, the input weights, the biases and the tradeoff factors are normally generated randomly or preset by human. Moreover, the number of input weights and biases depend on the size of hidden layer. Inappropriate quantity of hidden nodes may lead to the useless or redundant neuron nodes, and make the whole structure complex, even cause the worse generalization and unstable classification performances. Based on this, an adaptive CCR-ELM with variable-length brain storm optimization algorithm is proposed for the class imbalance learning. Each individual consists of all above parameters of CCR-ELM and its length varies with the number of hidden nodes. A novel mergence operator is presented to incorporate two parent individuals with different length and generate a new individual. The experimental results for nine imbalance datasets show that variable-length brain storm optimization algorithm can find better parameters of CCR-ELM, resulting in the better classification accuracy than other evolutionary optimization algorithms, such as GA, PSO, and VPSO. In addition, the classification performance of the proposed adaptive algorithm is relatively stable under varied imbalance ratios. Applying the proposed algorithm in the fault diagnosis of conveyor belt also proves that ACCR-ELM with VLen-BSO has the better classification performances.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2021

Natural Computing 1/2021 Zur Ausgabe

EditorialNotes

Preface

Premium Partner