Skip to main content

2024 | OriginalPaper | Buchkapitel

Adaptive Genetic Algorithm with Optimized Operators for Scheduling in Computer Systems

verfasst von : Yu. V. Zakharova, M. Yu. Sakhno

Erschienen in: Intelligent Information Processing XII

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Modern computing and networking environments provide the important problems of efficient using such resources as energy and cores or processors. It is based on the possibility of dynamically varying the speed of processors and using parallel calculations in the execution of operations. We consider the NP-hard speed scaling scheduling problem with energy constraints and parallelizable jobs. Each job must be executed on the given number of processors. Processors can vary their speeds dynamically. It is required to assign speeds to jobs and schedule them such that the total completion time is minimized under the given energy budget. An adaptive genetic algorithm with optimized crossover operators is proposed. The optimal recombination problem is solved in the crossover operator. This problem is aimed at searching for the best possible offspring following the well-known gene transmitting property. The experimental evaluation shows that the algorithm outperforms the known metaheuristics and demonstrates the perspectives of using adaptive techniques and optimized operators.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow time minimization. ACM Trans. Algorithms 3(4), 17 (2007)MathSciNetCrossRef Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow time minimization. ACM Trans. Algorithms 3(4), 17 (2007)MathSciNetCrossRef
2.
Zurück zum Zitat Benoit, A., Canon, L., Elghazi, R., Heam, P.: List and shelf schedules for independent parallel tasks to minimize the energy consumption with discrete or continuous speeds. J. Parallel Distrib. Comput. 174, 100–117 (2023)CrossRef Benoit, A., Canon, L., Elghazi, R., Heam, P.: List and shelf schedules for independent parallel tasks to minimize the energy consumption with discrete or continuous speeds. J. Parallel Distrib. Comput. 174, 100–117 (2023)CrossRef
3.
Zurück zum Zitat Blum, A., Eremeev, A., Zakharova, Yu.: Hybridizations of evolutionary algorithms with large neighborhood search. Comput. Sci. Rev. 46, 100512 (2022)MathSciNetCrossRef Blum, A., Eremeev, A., Zakharova, Yu.: Hybridizations of evolutionary algorithms with large neighborhood search. Comput. Sci. Rev. 46, 100512 (2022)MathSciNetCrossRef
5.
Zurück zum Zitat Caponio, A., Neri, F., Tirronen, V.: Super-fit control adaptation in memetic differential evolution frameworks. Soft Comput. 13(8), 811–831 (2009)CrossRef Caponio, A., Neri, F., Tirronen, V.: Super-fit control adaptation in memetic differential evolution frameworks. Soft Comput. 13(8), 811–831 (2009)CrossRef
7.
Zurück zum Zitat Drugan, M.M.: Reinforcement learning versus evolutionary computation: a survey on hybrid algorithms. Swarm Evol. Comput. 44, 228–246 (2019)CrossRef Drugan, M.M.: Reinforcement learning versus evolutionary computation: a survey on hybrid algorithms. Swarm Evol. Comput. 44, 228–246 (2019)CrossRef
8.
Zurück zum Zitat Gao, K., Huang, Y., Sadollah, A.: A review of energy-efficient scheduling in intelligent production systems. Complex Intell. Syst. 6, 237–249 (2020)CrossRef Gao, K., Huang, Y., Sadollah, A.: A review of energy-efficient scheduling in intelligent production systems. Complex Intell. Syst. 6, 237–249 (2020)CrossRef
10.
Zurück zum Zitat Gerards, M.E.T., Hurink, J.L., Holzenspies, P.K.F.: A survey of offline algorithms for energy minimization under deadline constraints. J. Sched. 19, 3–19 (2016)MathSciNetCrossRef Gerards, M.E.T., Hurink, J.L., Holzenspies, P.K.F.: A survey of offline algorithms for energy minimization under deadline constraints. J. Sched. 19, 3–19 (2016)MathSciNetCrossRef
12.
Zurück zum Zitat Kellegoz, T., Toklu, B., Wilson, J.: Comparing efficiencies of genetic crossover operators for one machine total weighted tardiness problem. Appl. Math. Comput. 199(2), 590–598 (2008)MathSciNet Kellegoz, T., Toklu, B., Wilson, J.: Comparing efficiencies of genetic crossover operators for one machine total weighted tardiness problem. Appl. Math. Comput. 199(2), 590–598 (2008)MathSciNet
13.
Zurück zum Zitat Kononov, A., Zakharova, Yu.: Speed scaling scheduling of multiprocessor jobs with energy constraint and makespan criterion. J. Glob. Optim. 83, 539–564 (2022)MathSciNetCrossRef Kononov, A., Zakharova, Yu.: Speed scaling scheduling of multiprocessor jobs with energy constraint and makespan criterion. J. Glob. Optim. 83, 539–564 (2022)MathSciNetCrossRef
14.
Zurück zum Zitat Kononov, A.V., Zakharova, Y.V.: Speed scaling scheduling of multiprocessor jobs with energy constraint and total completion time criterion. Int. J. Artif. Intell. 21(2), 109–129 (2023) Kononov, A.V., Zakharova, Y.V.: Speed scaling scheduling of multiprocessor jobs with energy constraint and total completion time criterion. Int. J. Artif. Intell. 21(2), 109–129 (2023)
15.
Zurück zum Zitat Kong, F., Guan, N., Deng, Q., Yi, W.: Energy-efficient scheduling for parallel real-time tasks based on level-packing. In: Proceedings of the 2011 ACM Symposium on Applied Computing, pp. 635–640 (2011) Kong, F., Guan, N., Deng, Q., Yi, W.: Energy-efficient scheduling for parallel real-time tasks based on level-packing. In: Proceedings of the 2011 ACM Symposium on Applied Computing, pp. 635–640 (2011)
16.
Zurück zum Zitat Li, K.: Energy efficient scheduling of parallel tasks on multiprocessor computers. J. Supercomput. 60, 223–247 (2020)CrossRef Li, K.: Energy efficient scheduling of parallel tasks on multiprocessor computers. J. Supercomput. 60, 223–247 (2020)CrossRef
17.
Zurück zum Zitat Lopez-Ibanez, M., Dubois-Lacoste, J., Perez Caceres, L., Birattari, M., Stutzle, T.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)MathSciNet Lopez-Ibanez, M., Dubois-Lacoste, J., Perez Caceres, L., Birattari, M., Stutzle, T.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)MathSciNet
18.
Zurück zum Zitat Mara, S.T.W., Norcahyo, R., Jodiawan, P., Lusiantoro, L., Rifai, A.P.: A survey of adaptive large neighborhood search algorithms and applications. Comput. Oper. Res. 146, 105903 (2022)MathSciNetCrossRef Mara, S.T.W., Norcahyo, R., Jodiawan, P., Lusiantoro, L., Rifai, A.P.: A survey of adaptive large neighborhood search algorithms and applications. Comput. Oper. Res. 146, 105903 (2022)MathSciNetCrossRef
19.
Zurück zum Zitat Neri, F., Cotta, C.: Memetic algorithms and memetic computing optimization: a literature review. Swarm Evol. Comput. 2, 1–14 (2012)CrossRef Neri, F., Cotta, C.: Memetic algorithms and memetic computing optimization: a literature review. Swarm Evol. Comput. 2, 1–14 (2012)CrossRef
20.
Zurück zum Zitat Pruhs, K., Uthaisombut, P., Woeginger, G.: Getting the best response for your erg. ACM Trans. Algorithms 4(3), 17 (2008)MathSciNetCrossRef Pruhs, K., Uthaisombut, P., Woeginger, G.: Getting the best response for your erg. ACM Trans. Algorithms 4(3), 17 (2008)MathSciNetCrossRef
21.
Zurück zum Zitat Reeves, C.: Genetic algorithms for the operations researcher. INFORMS J. Comput. 9(3), 231–250 (1997)CrossRef Reeves, C.: Genetic algorithms for the operations researcher. INFORMS J. Comput. 9(3), 231–250 (1997)CrossRef
22.
Zurück zum Zitat Salido, M.A., Escamilla, J., Giret, A., et al.: A genetic algorithm for energy-efficiency in job-shop scheduling. Int. J. Adv. Manuf. Technol. 85, 1303–1314 (2016)CrossRef Salido, M.A., Escamilla, J., Giret, A., et al.: A genetic algorithm for energy-efficiency in job-shop scheduling. Int. J. Adv. Manuf. Technol. 85, 1303–1314 (2016)CrossRef
23.
Zurück zum Zitat Shabtay, D., Kaspi, M.: Parallel machine scheduling with a convex resource consumption function. Eur. J. Oper. Res. 173, 92–107 (2006)MathSciNetCrossRef Shabtay, D., Kaspi, M.: Parallel machine scheduling with a convex resource consumption function. Eur. J. Oper. Res. 173, 92–107 (2006)MathSciNetCrossRef
24.
Zurück zum Zitat Slowik, A., Kwasnicka, H.: Evolutionary algorithms and their applications to engineering problems. Neural Comput. Appl. 32, 12363–12379 (2020)CrossRef Slowik, A., Kwasnicka, H.: Evolutionary algorithms and their applications to engineering problems. Neural Comput. Appl. 32, 12363–12379 (2020)CrossRef
27.
Zurück zum Zitat Wu, X., Che, A.: A memetic differential evolution algorithm for energy-efficient parallel machine scheduling. Omega 82, 155–165 (2019)CrossRef Wu, X., Che, A.: A memetic differential evolution algorithm for energy-efficient parallel machine scheduling. Omega 82, 155–165 (2019)CrossRef
28.
Zurück zum Zitat Zakharova, Yu., Sakhno, M.: Heuristics with local improvements for two-processor scheduling problem with energy constraint and parallelization. NUMTA 2023 180 (2023 ) Zakharova, Yu., Sakhno, M.: Heuristics with local improvements for two-processor scheduling problem with energy constraint and parallelization. NUMTA 2023 180 (2023 )
Metadaten
Titel
Adaptive Genetic Algorithm with Optimized Operators for Scheduling in Computer Systems
verfasst von
Yu. V. Zakharova
M. Yu. Sakhno
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-57808-3_23