Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

28.02.2018 | Original Article | Ausgabe 9/2019

Neural Computing and Applications 9/2019

Adaptive graph orthogonal discriminant embedding: an improved graph embedding method

Zeitschrift:
Neural Computing and Applications > Ausgabe 9/2019
Autoren:
Ming-Dong Yuan, Da-Zheng Feng, Ya Shi, Chun-Bao Xiao

Abstract

Graph embedding is a popular graph based dimensionality reduction framework, and it consists of two successive steps, i.e., graph construction and embedding. The traditional graph construction methods such as \(k\)-nearest-neighbor (k-NN) and \(\varepsilon\)-ball suffer from the difficulty in parameter selection and are also sensitive to noises. On the other hand, the property of embedding projection is not fully explored by many methods. In this paper, we explicitly investigate these two steps and propose three adaptive graph orthogonal discriminant embedding techniques (termed as AGODE-gs, AGODE-dl and AGODE-tr) for dimensionality reduction, and their differences lie in the way of orthogonalization. In our proposed methods, both the intra-class adjacency graph and the inter-class repulsion graph are constructed by a \(\ell_{2}\)-norm regularized least square, and an orthogonal constraint between the projection vectors is then imposed. The time and space complexity of the proposed methods are also analyzed in detail. We further show that the proposed methods are computationally more efficient than those \(\ell_{1}\)-norm based graph construction methods. Extensive experiments on four face databases (ORL, Yale, CUM-PIE and Extended YaleB) verify the effectiveness and efficiency of the proposed methods with encouraging results.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 9/2019

Neural Computing and Applications 9/2019 Zur Ausgabe

S.I. : Emergence in Human-like Intelligence towards Cyber-Physical Systems

A new method of online extreme learning machine based on hybrid kernel function

Premium Partner

    Bildnachweise